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ABSTRACT 

This research discusses a program which aids the 
user of an automatic programming system (APS) In the 
"debugging" of his model of his problem situation. In 
essence, the user must make sure that he and the APS mean 
the same thing by the description of the problem which the 
APS Is to solve. The problem domain considered In this 
thesis Is that of "business games" (I.e., the management 
simulation games which are used as a learning tool In the 
study of management). A language for describing models of 
these games Is presented. The paper then describes the 
program's methods of simulating and finding bugs In models 
written In this language. Important aspects of the program's 
problem-solving approach to debugging are Its Internal 
knowledge of "bugs" and of user Intention within the model. 
This Internal knowledge stresses the Importance of bugs 
arising from the Interaction of submodels within the model. 
Some details of the program's Implementation (In the 
Connlver language) are discussed. The necessity of 
"model-debugging" In automatic progrjjmmlng Is emphasized. 
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1      Introduction 

The     purpose    of     this     research     Is     to 

explore    a     methodology  for  debugging  certain  models  of   real 

world  situations.       The  models  considered    here     consist    of 

groups  of well-defined   submodels.       The   submodels   themselves 

are     fairly  structured;   the   Interaction  between   submodels   Is 

not.        In  this  paper   I   will   discuss  a  program which   uses  the 

techniques  of  goal-programming  to    explore     the      Interactive 

behavior of a  given model.       The  basic   Idea   Is   that  a  bug   In 

the     model   will   give   rise   to a  "problem".   ,   The   program then 

tries   to  solve   this  problem   In  an    environment     defined    and 

constrained       by     the     model.       Those     steps     at     which     the 

program's     problem-solving     process     encounters     constraints 

caused       by     unintended      interaction     of     submodels     suggest 

possible  locations of   bugs  within  the  model. 

To a large extent/ the problems of this 

research are "artificial Intelligence" problems. Th2t Is, 

the research problems Involve representation of knowledge In 

a     form    which useful      to       the       problem-solver,       and 

representation f the problem-solving process as a computer 

program. The remainder of this paper will deal with one 

solution of these problems for a program which debugs models 

of  management   situations.        This   section  will   present  a more 

~.~ _.>... >.    «MfetMMMMMn 
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complete explanation of the area of model-debugging as I see 

It. The next section prov.des an overview of the whole 

debugging process In the context of a detailed example. 

Later sections develor some Ideas about bugs, 

problem-solving, goal-programmfng, and the program Itself. 

1.1 Define "define" 

i.i.i mal Is. a ngde]? 

f-'.arvln Mtnsky describes the concept of a 

"mocel" as follows: 

If a creature can answer a question 
about a hypothetical experiment without actually 
performing It, then It has demonstrated some 
knowledge about the world. For his answer to the 
question must he an encoded description of the 
behavior (Inside the creature) of a sub-machine or 
"model" responding to an encoded description of 
the world situation described by the question. 

We use the term "model" In the following 
sense: to an observer B, an object A* Is a model 
of an object A to the extent that B can use A* to 
answer questions that Interest him about A.  |12| 

For the purpose of this research, the term "model" will be 

used In a much less general and more concrete way. 

Specifically, the program discussed here requires that the 

"encoded description" be of a particular pre-defined type, 

that the kinds of world-objects "A'1 to be modelled belong to 

a  very limited class of things, and that "P"^ questions of 

  . ■_ M    ._ _. -- - -        - -----_-. 
 — -— ■ 
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Interest be sharply restricted. 

After this sect?on/ the term "model" 

will be used to refer to a user-defined collection of 

constructs In a model specification lan^uap:e (MSL) 

(presented In section U.l) which describes a "real-world" 

management system. (1) For now, suffice 't to say that a 

"'model" Is a user's description of his system of Interest. 

That Is, the user thinks that the model describes his 

system—actually, the model contains bup;s. 

1.1.2 What is debugging? 

When  a  model's performance Is not what 

the user expects, we say that the model  has «•k,.„" hug"  (see 

section 3). Ti^e process of finding what causes the 

discrepancy between performance anH expectation Is called 

"debugging". It Is the nature of complex processes that the 

cause of a discrepancy may be related to the manifestation 

of the discrepancy only through a seemingly Intricate chain 

of reasoning. The purpose of this research Is to write a 

program which knows the necessary kind of reasoning to go 

from the manifestation to the cause of a bug. 

(1) 
Actually,   a   real-world  business  game. 

— - -■■■■■--- —- - —  



mminpvwiipiMivPv^pn^wHvnw mmmmm9m^vmmm<Jm' '■WPJI ' nf* mmummmmwrnim vH^w^^mmntm 

Par.e  8 

In order to Incorporate this reasoning 

process/ the propram must have l-nowledse about MSL models 

(see U.l), the kinds of burs that occur In MSL models (see 

3.3), how these hugs manifest themselves (see k.k,2), and 

how the causes are related to the manifestations (see 

it.U.3). Of course, this Is In some sense the "whole story"; 

before launching Into It, It mlpht be a ^ood Idea to examine 

our reasons for worrying about model-debugging In the first 

pi ace. 

1.2  Tti£ Importance Q±  model-debugging 

1.2.1  Model-debugging ££ a.  universal CQnCEPt 

The process of gaining knowledge about 

the world Is a process of model formation and debugging. 

The progress of all organized thought, especially science, 

has often been described In this way. More recently, work 

by psychologists such as Plaget and artificial Intelligence 

researchers such as Seymour Papert has brought this model 

formation/debugging view to bear on the entire learning 

process. Certainly, no one can doubt the Importance of 

studying so fundamental a process. 

Of course. In this research, the 

v!ewFoInt must be strictly limited.   The following sections 

•■  ■     ... 

. .. .  
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will describe a process which seems only barely related to 

the grandiose exaltations of the previous paragraph. For 

one thing, the extremely close Interaction between model 

debugging and formation will be greatly restricted to allow 

examination of the debugging process Itself. Also., the 

restrictions Inherent (1) In the "show a working program" 

approach of this research make the class of problems seem 

trivial when compared to the overall problem of 

model-debugging. 

Although I could now claim that the 

validity of this research effort Is that It provides an 

Initial Investigation Into a very hairy area (the usual 

Induction step In artificial Intelligence theses), I will 

move In more practical directions. (Of course, I hope for 

the higher parallels all alonp.) Specifically, I consider 

the Importance of the kind of model-debugging actual 1y 

presented  here  for  the  new  field  of  automatic   programming. 

1.2.2     Model-debugglnp XQ   automatic   programmtntr 

(1) These restrictions are "Inherent" at this stage of our 
knowledge, at this stage of my knowledge, and In the 
exigencies of churning out a Master's thesis. Certainly, 
there are no Inherent restrictions In the capabll Ity of 
computers   to   Incorporate  the   process. 

 -—■- - - -  - 
..^   -■---.-.—    ■■- . —-»:- ■i ■■■ i iiir — 
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Automatic prop; ramming; Is the art of 

provfdlnp: a computer program (an "automatic programming 

system" (APS)) which takes as Input some user-amenahle 

description of a task anH produces as output computer 

programs to accomplish that ♦•ask. The user's description of 

his task Is his "model" In the sense described In 1.1.1. 

This Is the "model" which the protram described In this 

thesis must debur. 

But why worry about model-debugging? 

Why not let the user specify something, let the system 

generate a solution program, and simply leave It to the user 

to respeclfy the problem If he doesn't like the results? 

There are several answers to this question, some obvious, 

otherr, not so obvious. Basically, the reasons for providing 

sophisticated model-debugging aids revolve around 

considerations of efficient use of the APS, ease of use of 

the APS, ease of construction of the APS, and "safety" In 

the use of the APS. 

The    most obvious   reason   for 

model-debugging  Is  that   since code-generation   (I.e., 

actually  writing  the  solution program after  the  task 

description Is In)  Is  a  rather arduous  process.  It  Is 

worthwhile making  sure  that the user and the APS agree on 

what the problem Is before the APS actual 1y writes  programs 

■ 
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to solve the problem. This idea of pre-code-^eneratFon 

debugging Is as old as compilers, and Is fairly well 

understood. (1) 

A related but not quite so obvious 

reason for providing model-debugging aids In an APS Is to 

make the system easier to use. This Is especially necessary 

In an APS like Protosystem I i9| which attempts to provide 

problem-solving expertise to aid the user. The point Is 

that the APS Is designed to provide prcblem-solvlng 

knowledge for a user who Is not at all adept In computer 

problem-solving. To help him design a description of his 

task and then not to aid him In debugging that description 

seems like providing not much help at all: descriptions of 

complex problems "always" have bugs, and finding them Is 

usually as sophisticated a task as writing the description 

In the first place. (2) Thus, I beleve that an APS that 

does not provide model-debugging aid would be difficult. If 

not Impossible, to use. 

Supposing,   then,  that  some  kind of 

(1) The actual debugging of models may be quite different 
from the debugging of source code, but the reason for doing 
so Is the same In this case. 

(2) Statistics have shown that about 50^ of the time In 
large system development Is spent In debugging |2|. 

 ■ •— --—"——-—— ^^-' -i^mim^^^lm^^^ ■ - ' ■■ - .• „-.Ma^MMMA' 
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debuKglng a!d Fs necessary, how should It be Interfaced with 

the user and with the APS?  The answer, I  think.  Is  that 

debuKKlPK  should  occur when the system's knowledge of the 

user's  problem  Is  still  at  a  high  level  of  symbolic 

description.   That  Is,  prior to code generation.  This 

leaves   the  debuggln ;  effort    In   the    realm   of 

model-debugging.   The  reason  that It Is Important to keep 

debugging at a high symbolic level Is to keep the design of 

the  APS  as  simple  as possible.  It Is quite difficult to 

maintain the links  between  mistakes which  occur at  low 

levels of description (e.*., programs) and their high-level 

causes.   Certainly  the  user cannot  be  responsible  for 

maintaining  these  links.   If  the APS tells him that "an 

Illegal reference was generated  from  location  11U37",  We 

cannot expect hin to have any notion of what went wrong with 

his model description.   In fact, the construction of an APS 

which  could  make   this  connection  between  the  bug's 

manifestation and Its cause would  be  extremely  difficult, 

it  seems much more  reasonable to carry on debugging at a 

high  level of symbolic description which both the user and 

the APS can understand In terms of the user's model. 

Finally, there Is a very special problem 

which arises In connection with the use of the APS. The 

user begins to develon a depend^nrv on the APS and to trust 

., .,._.... .... .-   
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the results of the solution prorrams. When the system 'is 

more expert then the user (as Is the case In Protosystem I), 

the user may even trust results which "common sense" (I.e., 

previous experience, educated guesses, etc.) tells him are 

wron?;. In these circumstances. It Is of paramount 

Importance that the user be sure that the APS has a correct 

understanding of his model. Other than the model-deburfilng 

subsystem within fhe APS, thpre may be no source of feedback 

which enables the user to find out that there Is anything 

wrong at all . (1) 

The model-debugging facility has sole 

responsibility for helping the user to understand what Is 

wrong with his model In terms of the model — I.e., In the 

only terms the user understands. An APS which does not 

provide a facility for Interactive discussion of the model's 

assumptions and their ramifications Is a dangerous tool 

Indeed. Thus, the user must always have some means of 

observing the effects of the assumptions In the model and 

for making sure that the APS "knows what he means". The 

model-debugging subsystem of the APS provides the necessary 

mechanism. 

Therefore,  for  reasons  of efficiency. 

(1) The output code and. In many cases, the assumptions 
underlying Its generation will be Incomprehensible to the 
average user. 

^. i—^^.  ■iMuuiiMiimiir-   ■  —  -      
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usability, and safpty, a model-debugsInp facility Is a 

necessary part of an automatic programming system. otlll, 

the general problem of model-debugging In automatic 

programming Is much too larre to be considered here. In 

the next section, I will explain the particular subdomaln of 

automatic programming I will attack, and my reasons for 

choosing It. 

1.3  Details, telfllls 

1.3.1  Restriction to th£ WQßG 

The program described In this thesis Is 

specialized to work on models chosen from the "world of 

business names" (WOBG). By this I mean an environment In 

v/hlch the concepts common to business games are the stock 

knowledge. There are several reasons for choosing this 

domain of Interest: (1) the models are sufficiently 

structured to be formally expressible, but are not so 

structured that they are susceptible to mathematical 

analysis; (2) the Interaction of submodels Is the most 

Interestlnn and complex aspect of the model; (3) this Is one 

of the few domains which Is both reasonable-sized and 

"real-world" (In the sense that there Is a great deal of 

Interest In It Independent of this research); ik)   It  Is a 

  — ■ -   MMi^MMMMHMMMWHMIIIIIIMMIlaHalMM^MMMi 
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natural  subdomaln of  the  "world of  business"  (WOB) of 

Protosystem I |9|. 

Models In various domains differ greatly 

In the amount of "structure" present In the  description  of 

the  model.   By "structure" I mean clearly defined rules of 

construction and constraints on elements.  The methods  used 

In  this  research require well-defined models.  However, If 

the  model  Is  "too  well-defined",   debugging   becomes 

uninteresting,  or   Is  more  easily  accomplished  by 

mathematical tools.   The WOPG seems to have just the  right 

level  of  structure.   Since the Idea of modelling business 

systems Is well  established,  there exist  a  variety of 

formalisms  for expressing business models.  These modelling 

formalisms are even mo-e clearly defined for business games. 

The very Idea of a game Is to have a precise set of elements 

and rules for manipulating then.  Nonetheless, understanding 

and debugging models  of  business  games  Is  by  no means 

trivial.   There  Is good ev,de,ce  that users of even the 

simplest of business games have very poor and "buggy" models 

of what Is going on |3|,|6|,|8|.  The main reason  for  this 

Is  the  complexity of the Interaction between submodels In 

business games. 

I   am   particularly   Interested    In 

debugging models In which Interaction of subparts Is a major 

LL. ---■"—'  ■-  
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factor In model complexity. Most model-worlds which have 

been Investtrated In artificial Intelligence research (e.g., 

the "blocks world" I21|) have few complex Interdependencles. 

Existing Interaction problems fend to be downplayed In order 

to emphasize other aspects of the models. (For example, 

see WinorraH's "solution" to the "flndspace problem" In 

1211; cf. |17|.) I wish to explore the other end of ihe 

Interdependency scale; I.e., highly Interactive models. (1) 

The kind of models which the program described In this 

research Is designed to debup: are those In which the user 

has a j^ood understand I np of the various parts of the model, 

but doos not understand how these parts (v/hlch I will call 

"submodpls") Interact with each other. (2) 

in fact, äH of the bups which the 

program Is designed to ^Ind arise from Interaction of 

submodels (see  section  3.5).   Business  games  have  very 

(1) Real world situations pres 
between these two extremes, 
considerable amounc of space (a 
examination of how Interaction 
complexity factor In real world s 
in large business organizations 
Interdependency problems form 
similar problems in the toy-worl 
am hoping to motlvafe an Interest 
which will preoccupy the remalnde 

umably fall  somewhere  In 
However,  I  will devote a 

11  of  section  3)  to an 
of submodels Is the major 

Ituatlons  (In  particular, 
), and how these real world 
the  "semantic  roots"  of 
d used In this research.  I 
In the "Interaction  bugs" 

r of the thesis. 

(2) I believe that this Is a large and Important class of 
models. Including models of "systems" with wel1-understood 
elements   (see   I 3|). 

.   ...      -»...    .■-..^■..t^-.^.t.- ■ ....—-■»^■.. .^-.^.^^-■^^■^   ■   ,,   ,■,, m llf^^^..^JjJ--^--JJL.^-^M«-i..iM^J,  
'-'■"■■ —■—' -^  J"-j — -- 
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precisely defined elements (see the examnle pame In Appendix 

A). However, theje elements Interact with each other to 

the extent that understandInr how the "whole system" (I.e., 

all of the Interacting, parts) works Is a major challenge to 

the players. Thus, since poorly understood Interaction of 

submodels Is the major source of burs In this domain, the 

WOBfi forms an excellent testing ground for my program. 

Business pames also have the Important 

property of being Interesting in their own rlpht. Playing 

and understanding business rames Is considered to be an 

Important activity at many schools of management throughout 

the world. There Is therefore little Hanper of being 

accused of designing a program which works only In an $£, hoc 

problem domain. Furthermore, since people are used to 

trying to model business games for themselves, they can 

appreciate the efforts of a propram which aids In the 

debugging of such models. This "real world" flavor of 

business games Is one of thMr most Important properties for 

this research. 

Finally, the UOBG Is a natural subdomaln 

of the WOB of Protosystem I. This Is useful, first of all, 

because It allows a certain Inheritance of philosophy and 

technique from the larger project. More Importantly, 

though. It enables the model-debugger presented hero  to  be 

 ■ - -■ -—-' -■ ■■    
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seen In the context of a lar^e automatic programming; system. 

Since the raI son d'etre of my program Is use In an APS, this 

connection with Protosystem I Is an Important aspect of the 

research. + 

Therefore, the basic philosophy of 

model-deburglng presented here will be applied to models 

chosen from the world of business games. In order to show 

that my basic Ideas about debugging are Indeed "working 

Ideas", I have written a program which uses these concepts 

to debug actual models of business games. 

1.3.2     ihs. ISLLS. ol ihs. prpgram ID. ihs. thesis 

The program presented In this thesis 

serves several purposes: Illustration of Important methods, 

demonstration of the workability of the techniques, and 

discussion of design Issues for model-debugging programs. 

Certainly, the major use of the program In the thesis Is to 

provide examples for the debugging theory developed In the 

research. All the major debugging Ideas are Illustrated by 

a scenario from the working program. As for the second use 

of the program, a little care Is necessary fn explaining the 

"proof" value of the program In the thesis. It Is often 

contended  that  working  programs  prove the utility of the 

- - -    ■           -   . .            i i   ■——■!■■■  unit 
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theories that they represent. This Is true, so long as the 

reader fs careful not to use some sort of false Induction 

prlnclpJe to Infer too much from what the program actually 

dflfii. As (s almost always the case, the program In this 

thesis can actually do only a subset of what Is talked 

about. I will always make It clear what the program can 

and cannot do, how the program can be extended to do more, 

etc. The reader should draw any general 

concluslons--carefully--from this Information. 

Using this "program-as-Mlustrator" 

Philosophy of presentation, I will now launch Into a 

detailed example of program operation on a simple model. 

This will hopefully give the reader a good basic Idea of 

what the rest of the thesis has to say. Th* Issues raised 

In the example and the example Itself will be discussed at 

length In the rest of the thesis, each aspect of the problem 

appearing In Its logical section (see table of contents). 

 —■ L-J^Lif-^A—J-^X^^O^^^^^L^^- 
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The  Important  thing  to  keep  In mind 

about thU program Is that It finds the causes  of bugs  In 

much the same way that people (or Sussman's HACKER |18|) do: 

by trying to solve problems—and falling.  In this section I 

will  present the complete works of my program In connection 

with a very simple example.   A  lot  of  new notation  Is 

presented  here;  please  don't  get  bogged down In It.   I 

present It here only to avoid vagueness In showing what  the 

program actually works with.  More complete explanations of 

all the notation (and Indeed, the entire example) appear  In 

the appropriate sections later on.   This discussion focuses 

on what  the  program means  by a "bug" and on some of the 

procedures used to go from the manifestation to the cause of 

a  bug.    Neither  the  procedures  nor   the  descriptive 

mechanisms used by the program are discussed In detail here. 

Philosophical  Issues about  representation of knowledge In 

the program and goal-programming  are  eschewed completely. 

This  Is  a quick "Introduction by doing" to the methodology 

of the program. 

Suppose the user  presents  the program 

with the following (tiny) model: 

b. . , i- . - - ■- i J . ~  — -■•-  ■ ■   -   . ........   ^.1-.-. ..^-^-_.^^-.-.^..-^^^J 



Consider  the  fo 
of sales.  A sale  Is a  probabfllst 
which  depends  only on the amount o 
done.   Advertising costs $3000 per 
good  for  one  quarter.   I  buy  th 
advertising per quarter. If the money 
available.    Sales take place during 
There Is one call per  salesman  per 
customer never buys more than one unl 
Is  sold,  the  company  records $500 
receivable (A-R), which  Is  not  col 
another two quarters.  At any time, a 
a 504     chance of quitting.  If a sale 
new man  Is  hired.   After  three 
training,  this man  becomes  a  sal 
start making calls.   Both salesmen 
are  paid $1000 per quarter.  Trainee 
S%  chance of quitting at any time. 
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1 lowing model 
lc occurence 
f advertising 
page and Is 
ree pages of 
to do so  Is 
sales cal1s. 
quarter. A 

t. If a unit 
0 In accounts 
lectable  for 
salesman has 

sman quits, a 
months of 

esman and may 
and trainees 
s also have a 

The user would Input this model Into the program with the 

model specification language presented In section l».l. In 

these MSL terms, the model looks like: 

(♦ACTIVITY HIRING 

(♦PREREQUISITES (*PPESENT (1000 CASH))) 
(♦SCHEDULE ON QUIT) 
(♦PRIORITY 2) 
(♦OUTPUT (SOME TRAINEE)) 
(♦TAKES 0) 

(♦ACTIVITY ADVERTISING 

(♦PREREQUISITES (♦PRESENT (3000 CASH))) 
(♦SCHEDULE 3) 
(♦TAKES 1) 
(♦PRIORITY 3) 
(♦OUTPUT (1 PAGE-OF-ADVERTISING)) 

(♦ACTIVITY TRAINING 
(♦PREREQUISITES 

(AND 

(♦PRESENT (1000 CASH)) 
(♦PRESENT (SOME TRAINEE)) 

■■■atMaai—BkiHtaiBaaMUMMaaBta^MiaMlanUM^ riB_M-a._M__AU>-_   "- ' ■" 1 
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) 
(♦TAKES 3) 
(♦OUTPUT (SOME SALESMAN)) 

) 

(♦ACTIVITY SALES-CALL 
(♦PREREQUISITES 

(AND 
(♦PRESENT (1000 CASH)) 
(♦PRESENT (1 UNIT)) 
(♦PRESENT (SOME SALESMAN)) 

) 

) 
(♦TAKES 1) 

(♦ACTIVITY COLLECTION 
(♦PREREOUISITES (♦PRESENT (5000 A-R))) 
(♦TAKES 2) 
(♦OUTPUT (5000 CASH)) 

) 

(♦EVENT SALE 
(♦CONDITIONS SALES-PROBABILITY) 
(♦ACTIVITIES (SALES-CALL) 

(♦OUTPUT (5000 A-R)) 
) 

) 

(♦EVENT QUITTING 
(♦CONDITIONS QUITTING-PROBABILITY) 
(♦ACTIVITIES (SALES-CALL) 

(♦CANCEL) 
(♦REMOVE (THAT SALESMAN)) 

) 
(♦ACTIVITIES (TRAINING) 

(♦CANCEL) 
(♦REMOVE (THAT TRAINEE)) 

) 
) 

(♦FUNCTION SALES-PROBABILITY 
(♦ARGUMENTS (PAGE-OF-ADVERTISING)) 
(♦RETURN ad-functlon)) 

) 

(I will not show the exact nature of 
"ad-functlon", as It Is a ♦TABLE construct (see i».l)-- 

  ■  -^..--        ■■■■,.  ..■.■J.-..W.-J.—J...-. ....'.    ...L.^......-.   . 
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heUre  (see^p^r^  that We  shou,d",t ^ry about 

the  following: 
Now  suppose   the   user  gFves     the     program 

(♦SIMULATE   k   1 
((30000  CASH) 
(50   UNIT) 
(DON  SALESMAN) 
(MARK  SALESMAN) 
(STEVE   SALESMAN) 
(BILL  SALESMAN) 
(.05   QUITTING-PROBABILI «-Y))   ) 

or.     In    words,  slmulate the modeI   for H quarters.  show,„g a 

t.Me-sUce every quarter,  and „,th  the  „ven  .mt.al  va.ues 

Before    cons.der.n.    the    actions    of     the    pr0Rram,     It     |s 

worthwhile   to note a  few things. 

Frrst, observe that the the user has 

.Iven the model (50 UNIT) as an Initial resource. Thts Is a 

typical example of a model-testing technique: adding s,aclc 

to    decouple     submode.s. Presumably,     UNIT     Is     someth.ng 

created by another submodel which the user does not wish to 

insider at tnls time. The user effectively removes this 

"other submodel" by maUng sure that the submodel Is never 

H-rted by the amount of UNIT avaMable. (The PRODUCTION 

submode!  which  creates  UNIT-s   Is  shown   In  Appendix  B.), 

Second,    note    that     we    are    making    an 

-•Plle.t    assumption    about    what     the  user wl 11   do with  the 

L ..,.■...~,.... ..-^■■....■.,■.,-.   -"——— —    •   —      _MMM^MM 



simulation after It Is presented by the program. We are 

assuming that he win be either satisfied or dissatisfied 

with the result (1) . if he Is dissatisfied, he will express 

his expectation to the system In the form of a goal. This 

Inltlc -s the debugging process. At this time, let us 

rejoin our example. In progress. 

The first action of the program Is to 

simulate the model as the user requests. If the user's 

expectation Is fulfilled, no further action will be taken 

until the user's next request for simulation. If his 

expectation Is not met, the program will help him find the 

bug In the model. 

The requested simulation Is shown below. 

The representation used here (and throughout the thesis) 

should be seen as a graphical description of the complex of 

list structure which the program uses to describe simulation 

histories. Every part of the diagram has an analog In the 

Connlver |20| representation of the program (see section 

k.2). 

(1) We are also assuming that the user Is a good judee of 
ThU ?. Verformance of the system he Is trying to mode? 
Ihll     it    0f  CCTSe not 'consistent with our basic premise 
that  the user does not fully understand the workings of the 

are5'" Wn^ ' h^ '" "T '" h,S ^ >•  Rather ^ are  saying  that  the user knows pretty well what th«. mn,4»i 
should do, but Is having trouble makln^the moSerdo^h^tJ 

imuMiri'-initifilliTÜiiäill 
t"-t]^""'  -  .1^-.. -.-■—w.^ ^I.-^.,,...^.^»^ 
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♦TIME-SLICE   0* 

RESOURCES: 

SIMULATION-HISTORY 

SALESMEN: DON, STEVE^ARK, BILL 
CASH: 30000 
UNITS: 50 

♦TIME-SLICE 1* 

SALESMEN: PON, STEVE, MARK, BILL 
CASH: 17000 
UNITS: i»8 
A-R: 10000 

SCHEDULED «ACTIVITY'S: 
SALES-CALL (DON) 
SALES-CALL (STEVE) 
SALES-CALL (MARK) 
SALES-CALL (BILL) 
ADVERTISING 
ADVERTISING 
ADVERTISING 
COLLECTION 
COLLECTION 

♦EVENT'S; 
SALE (BILL) 
SALE (DON) 

(TIME-LEFT = 2) 
(TIME-LEFT = 2) 

♦TIME-SLICE 2* 

RESOURCES: 
SALESMEN:   DON^MAR^BI LL 
CASH: 5000 
UNITS: ^7 
A-R: 15000 
TRAINEE:     G0001 

SCHEDULED ♦ACTIVITY'S: 
SALES-CALL   (DON) 

— ——■   ■■--■■ - \ ■,t\w\ \«,*Mt   ■ >-"-^- ■■■- ■■-    ■    ■-■'■■■- 
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SALES-CALL   (MARK) 
SALES-CALL   (BILL) 
ADVERTISING 
ADVERTISING 
ADVERTISING 
COLLECTION   (TIME-LEFT  »   1) 
COLLECTION   (TIME-LEFT  «   1) 
COLLECTION   (TIME-LEFT  =   2) 
HIRING 
TRAINING   (TIME-LEFT  =  3) 
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^EVENT'S: 
SALE   (MARK) 
QUITTING   (STEVE) 

♦TIME-SLICE   3* 

RRESOURCES; 
SALESMEN:   DON, 
CASH: 
UNITS: 
A-R: 
TRAINEE:     G0001 

MARK,   BILL 
2000 

10000 

SCHEDULED   »ACTIVITY'S: 
SALES-CALL   (DON) 
SALES-CALL   (MARK) 
SALES-CALL   (BILL) 
ADVERTISING 
ADVERTISING 
ADVERTISING 
COLLECTION   (TIME-LEFT 
COLLECTION   (TIME-LEFT 
TRAINING   (TIME-LEFT  - 

*EVENT,s: 

2) 

2) 
1) 

SALE   (BILL) 

♦TIME-SLICE   h* 

RESOURCES; 
SALESMEN: DON,   MARK,   BILL 
CASH: 1000 
UNITS: kS 
A-R: 10000 

. . .—  i    i -  -   ■ - - -      ■   - 
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TRAINEE:  G0001 

SLQMEMkEfi *ACTIVITY'S: 
SALES-CALL (DON) 
SALES-CALL (MARK) 
SALES-CALL (BILL) 
ADVERTISING 
COLLECTON (TIME-LEFT = 2) 
COLLECTION (TIME-LEFT = 1) 
.'RAINING (TIME-LEFT = 1) 

♦EVENT'S 
SALE (MARK) 

The simulation has resulted In 5 SALE's. 

Suppose that the user expected 6. There Is a bug In the 

model--but where? Note that the model runs out of CASH In 

the last quarter (and therefore cannot schedule ail three 

ADVERTISING *ACTIVITY•s). However, the bug Is not "NOT 

ENOUGH CASH". Rather, this effect Is symptomatic of the 

bug. Most of the effort of the program Is to point out 

hugs, not their symptoms. But this requires problem-solving 

In the context of tne simulation history. Back to the 

actual action of the program... 

The user notes that there were only 5 

SALE's rather than the expected 6. In order to try to 

rectify things, the user gives the system 

(♦GOAL (INCREASE SALE D) 

The program Is now In the debugging business.  It must try 

- ■ -■ -- --■ ■ - 
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to solve the problem of Increasing the number of SALE's In 

the context of the given simulation history. The places at 

which It encounters dubious constraints In the simulation 

environment are Its possible locations for bugs. 

The program uses the model and the 

simulation history to perform the requisite problem-solving 

activity for each goal as It Is presented. This may be 

thought of as asking two questions of the model and the 

slmulatIon: 

CD      Why didn't you do this before? 

and/ !f there Is no good reason, 

(2)      How could we do this? 

The method of asking and receiving answers to these 

questions Is best explained by continuation of the example. 

The first goal (given by the user) Is 

(♦GOAL (INCREASE SALE 1)) 

Since this goal was given by the user, the first question Is 

not asked. However, the second question Is asked. How can 

we Increase the number of SALE's? By examining the model 

and using the logic of INCREASE (explained In section 

U.i*.!), we see that one way to Increase SALE's Is to 

Increase the probability of a SALE occurlng. Thus, the 

system generates a new goal 

  --*■•■■ —■- ■ ■ - ■■■■•- ■■■•■ -'■■--  -^  •*-     'JMM 
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(♦GOAL (INCREASE SALES-PROBABILITY)) 

Now the program asks question number one: why wasn't 

SALES-PROBABILITY higher In the first place? The program 

looks at the simulation history and notes that the 

SALES-PROBABIL'TY was at a low In t Ime-sHce «♦. Why Is It 

so low? There was not enough ADVERTISING, the program 

determines. This Is a BAD REASON: the model was 

RESOURCE-LIMITED. Okay, how can we get the necessary 

ADVERTISING? In order to Investigate this question, the 

program generates a new goal 

(♦GOAL (SCHEDULE 2 ADVERTISING k)) 

which means "try to schedule 2 ADVERTISING ^ACTIVITY'S In 

time-slice k". (The  fact  that we  need 2 ADVERTISING 

♦ACTIVITY'S IS presumably due to the e;cact nature of 

"ad-functlon", and will not be discussed here.) Again, the 

program asks why the ADVERTISING ♦ACTIVITY'S were not 

scheduled In the first place. The answer Is that there was 

not enough CASH; still RESOURCE-LIMITED, so we pursue this 

1Ine with: 

(♦GOAL (INCREASE CASH 6000 l»)) 

By again asking the questions and forming new goals, the 

program forms the following ♦GOAL line: 

(♦GOAL (INCREASE CASH 6000 U)) 

■■ ..--..- '—'--—     ■-      -■-■■-liltii1Hiiiiin "     '•■ 
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(♦GOAL (SCHEDULE 2 COLLECTION U)) 

(♦GOAL (ALLOW 2 SALE 2)) 

(♦GOAL (SCHEDULE 5 ADVERTISING 2)) 

("ALLOW" rather than "SCHEDULE" because SALE ts an ♦EVENT.) 

Note that we are back to SCHEDULIng ADVERTISING. Are we In 

some kind of loop? No, we are moving back In time. 

Furthermore/ this time, when we ask why we didn't schedule 

three more ADVERTISING ♦ACTIVITY'S In time-slice 2, we find 

that the Ireason Is that the user told us not to (via his 

♦SCHEDULE specification In the ADVERTISING ♦ACTIVITY (see 

page 17)). Thus, ADVERTISING Is SCHEDULE-LIMITED !n 

time-slice 2. This Is a GOOD REASON, and the program 

terminates action on this line of thought. Nonetheless, It 

saves Information about the terminated line. If no more 

"likely" bug Is found, the program will tell the user that 

his ♦SCHEDULE specification for ADVERTISING Is Insufficient 

to allow the model to meet his expectations. In the 

meantime, however, the program explores the model for more 

likely bugs.  The program does this by "backing up" (1) some 

(1) This Is not automatic backup In the PLANNER sense. The 
program backs up only In certain cases, and only under 
program control. More Importantly, the effects of the 
"backed-over" ♦GOAL's are "iindone" onlv In the context of 
the simulation history. The terminated lines must be saved 
for later examination by the program. This Is essential for 
handling  the  ♦GROUP constructs discussed  later  In  the 

■■■    ^MHOBüMiMI MMS^^M^ia ~.a»a_ 
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and trying a different line of attack. 

In  this case, the propram checks to see 

If there Is another way to accomplish 

(*GOAL (ALLOW 2 SALE 2)) 

Using Its usual questfon-asklng procedure, the program finds 

the alternate 1Jne 

(♦GOAL (ALLOW 2 SALE 2)) 

(♦GOAL (INCREASE SALES-CALL 2 2)) 

(♦GOAL (INCREASE SALESMAN 2 2)) 

(♦GOAL (SCHEDULE 2 TRAINING -1)) ??? 

(Note that CASH does not have to be INCREASEd In this line 

because there Is already a sufficient amount to support the 

new INCREASES.) The program Immediately notes that It Is 

trying to schedule In negative time, and terminates the 

line. 

This finishes off the entire 

(♦GOAL (INCREASE SALES-PROBABILITY)) 

Idea. But there Is still another way for the program to try 

to get that extra SALE It Is looking for: by trying to 

Increase the number of SALES-CALL's. Thus, 

(♦GOAL (INCREASE SALE 1)) 

thesis, and for making final debugging recommendations  (see 
section k.k). 
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(•GOAL (INCREASE SALES-CALL 2 k)) 

(♦GOAL (INCREASE SALESMAN 2 k)) 

(*G0AL (SCHEDULE 2 TRAINING 1)) 

(♦GOAL (INCREASE TRAINING 2 1)) 

(♦GOAL (INCREASE HIRING 2 1)> 

(The choice of time-slice k for INCREASlng SALES-CALL was 

not arbitrary: the program chooses a slice where It thinks 

It can do the most good.) But the program cannot accomplish 

this last goal. Why not? The user specifically said not to 

hire until someone quits. The program then checks to see 

If HIRING did In fact occur. Yes--one time-slice later. 

This particular set of circumstances suggests a common 

timing bug In the manager's "fIre-fIghtIng" approach to 

problem solving—no action was taken until It was too late 

for ft to do any good (the solution Is to anticipate 

problems; more details about managers' bugs In section 3). 

Since this bug arises from so specific a group of events, 

the program thinks It Is a rather probable bug and gets 

ready to suggest It first. It then checks to see If there 

are any other ways of INCREASlng the number of SALE's. 

Since there are not. It Is finished looking for bugs, and Is 

now ready to suggest the bugs It knows. 

As advertised,  the first bug suggested 

to the user Is: 

.. .-— _. ..- —^—^     
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TOOAUTECHEDULE F0R HIR,NG: DEPENDENT ON  QUIT;  HIRING 

The user may agree that this Is the bug (I think It Is), 

or ask the program to try again. The next bug suggested 

ts 

"BAD SENSE OF PRIORITIES: HIRING AND ADVERTISI NG 

Essentially, the program suggests that It could have 

gotten more ADVERTISING If HIRING did not have higher 

Priority. |f the user doesn't buy thfs, the program 

suggests that he simply blew the »SCHEDULE specification 

on ADVERTISING: 

--BAD »SCHEDULE FOR ADVERTISING: NOT ENOUGH 

If the user still doesn't 1 Ike what's happening (and 

since the program has suggested all of the bugs It 

found), the program decides to see If the user might have 

mis-specified or completely omitted a relevant part of 

his model (this happens more often than you might think) 

It then uses Its access to WOBG knowledge to suggest 

—MISSING »ACTIVITY: FACTORING 

(the user may  factor accounts-receivable  to provide 

Instant cash) and 

-MISSING »ACTIVITY: RESEARCH AND DEVELOPMENT 

^^...^_„ 
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(the user may Increase the probability of a sale by 

Improving his product). 

The program goes out of the debugging 

business whenever the user takes a suggestlon/ or, of 

course, when Its bag of tricks Is exhausted. The user 

can now fix his model or change his expectations and 

re-simulate. Eventually, this process of simulation and 

debugging will converge to a model that the user Is 

confident that he and the APS both understand 

sufficiently. 

In this section I have tried to show 

a complete example of what this thesis Is about. I will 

now go Into an examination of the foundations of this 

approach, and the techniques that allow Its 

Implementation. I begin with a philosophical discussion 

of bugs (yech). 

■ ■■,-  ' ■ '■ - - 
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3 ßgfis 

A bug Is something that prevents 

something from behaving the way someone expects It to. 

This section particularizes the notion of "bug" to a 

concept which Is useful for this research. As usual, the 

program only knows about a narrowed-down version of 

"bug". 

We will be Interested here only in 

"understanding-bugs"--! .e.,, bugs that exist only in the 

user's understanding of the system he wishes to model 

(cf. Goldstein's "semantic bugs" |5|). This Immediately 

removes from consideration "parenthesis errors" and other 

"syntactic bugs" (of course, trivial syntax bugs 

sometimes arise from a basic misunderstanding). Thus, 

there will be no Interest whatsoever in finding bugs due 

to MSL errors. In fact, no attention Is given to bugs of 

any kind that arise from careless expression of the 

user's knowledge In the modelling formalism. 

The kinds of bugs with which the 

program is concerned are those that seem to be "inherent" 

In the way people understand (or misunderstand) systems. 

The rest of this section will be devoted to an 

examination of bugs that occur in the modelling process 

HMMMOHaa. - —  
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and the features of the problem domain that cause them to 

occur. 

3.1   Pugg ia models 

3.1.1 What did 1 da wrong? 

What happens when people try to model 

systems? They       usually      do       some       mumbling        and 

head-scratching and come out with some sort of expression 

of their Ideas. In this research, the "expression" Is 

required to be rather formal, but this doesn't matter 

much. Next, the modeller somehow tests his lodel to see 

how It performs under various conditions (just as my 

system uses simulation, see section U.2). Most of the 

time, the model does not perform as the modeller expects 

It   to--"somethIng goes  wrong". 

Actually, "something went wrong" at 

deflne-tlme: there Is something In the definition of the 

model which Is causing the unexpected behavior. I have 

already mentioned the hypothesis that the user has a good 

understanding of each submodel. (1) Thus, the part of 

the    model     definition     which     Is     In    error    must    be    a 

(1)   The  notion of  "submodel" will   become much    more     precise 
when   I   discuss MSL   In   section   U.l. 

-•"j-^-—-" ... ^       
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specification of submodel Interaction. The 

manifestation of such a bug varies widely with the 

particular bug Involved, and tends to be a detailed 

matter       (I.e.,       highly       dependent       on       the actual 

representation formalism). Therefore, I will postpone 

(th discussion of this problem until after I have 

described the formalism (k.k.2), and go on to an 

examination of the "semantic roots" of these "Interaction 

bugs". 

3.1.2   Interaction   b»g5 

In order to understand the Idea of 

Interaction between submodels. It Is helpful to view the 

model as a process which defines the action of the 

modelled system. Thus, the models we will txamlne here 

all "do something". The model can be seen as a syster 

which converts some sort of Input resources Into some 

predefined outputs. (This Is, Ir fact, a very popular 

view    of    management     systems.) For    the model   to "do" 

anything. Its submodels must Interact with each other. 

That Is, the Inputs to the entire model are actually 

Inputs to certain submodels which convert them Into 

Intermediate  quantities  which  are   In  turn   Inputs   to other 
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submodels--and     so    on     until     the    desired    outputs    are 

obtaIned. 

Via       this Interaction, various 

dependencies between submodels arise. The most common 

Is that one submodel must wait for the completion of 

another before It can begin action. (See section h.k for 

a detailed account of different kinds of Interaction 

between MSL submodels.) Also, submodels often share 

basic resources, giving rise to conflicts between 

submodels. 

These dependencies and confllets 

between submodels provide the environment for the 

following  basic  "Interaction  bugs": 

(1) Unexpected conflict arising from competition for 
shared  resources 

(2) Weak performance due to poor perception of 
time-phased  occurences 

(3) Special complexity problems arising from the 
concentration of (1) and (2) In "tight systems" bound 
by  higher-order constraints 

Although I believe that these bugs have considerable 

generality, I will not discuss them In the abstract. 

Instead, I will mov« Immediately Into the domain of 

management  systems  to provide  a   framework for discussion. 

WMii    i in-"--— - ■•■-■' .-.-^—^.^-- i.——^       ^.^^.—■ MMWM^Mk^MMM '       -- -'   -  — 
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:1on   In  pianaKeriient   ^ygtepis 

The bugs catalogued In the above 

subsection arise from poor understanding of complexity. 

This "complexity" Is directly Inherited by the models from 

the modelled domain. As an Introduction to the Interaction 

complexity of organizations In the world of business (which 

form the basis for business games, the "modelled domain" of 

this  thesis),  I will quote In full an Illustrative passage 

from Galbralth |M. 

There Is considerable variation  In  the 
amount  of  Interdependence In organizations.  The 
kinds  of  variation   can  be   Illustrated   by 
considering  a  large  research  and  development 
laboratory employing  some 500 scientists who  are 
pursuing  the  state-of-the-art.   Thusu,

w|: hale  f 
large  number  of  elements  and  high   task 
uncertainty.   However,  there  Is 1 I ttle need for 
communlcatlon.  All the projects are small and not 
directly connected to other projects.  Therefore a 
schedule  delay or  a  design  change  does   not 
directly affect other  design 
source  of  Interdependence  is 
groups  share  the  same  pool 
facilities.  Ideas,  and  money, 
Initial  resource  allocations 
necessary communication between 
to pass on new Ideas (Allen, 
Interdependence has been termed as POPlecl 
(Thompson, 1966, Pp. 5U-5). 

If  the nature of the projects 
Is changed from 250 small Independent ones to two 
large ones, a different pattern of Interdependence 
arises. The large projects will require 
sequential designs. That Is, a device Is first 
designed to determine how much power It win 
require. After It Is complete, then the design of 
the power source can take place. Under these 
conditions, a problem encountered In the design or 

groups.  The only 
that  the  design 

of resources--men. 
But  once   the 

are made, the only 
deslrn  groups  Is 

1969).  This type of 
termed 

rol liihj    i     i [■ ■ ii'ilimiiiiliiMi ■^-—--■■■ ■■-•-  • ■ ■' ■ ■'■■ ■* -' ■•-—---'- - - -       ----- ^ 
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Each of Galbraith's examples Illustrates 

a kind of Interdependency between subunlts of an 

organization. The first kind, pooled "interdependency . 

gives rise to interaction bug (1) of the previous 

subsection. That Is, when resource sharing Is present, there 

Is liable to be unexpected conflict betweer subunlts trying 

to use the same resources (These are the PRIORITY bugs of 

the example In section 2), Galbralth next cites an example 

of  sequent lal  Interdependency. I.e., interaction over time 

L         ■ ■ —  — 
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as well as resources. Again, this second kind of 

Interdependency provides an environment for the second kind 

of Interaction hug: when subunlts interact over time, the 

modeller is liable to mls-estlmate time-effects, thus 

causing degraded performance (these are the SCHEDULE bugs of 

the example in section 2). Finally, Galbralth mentions 

hleher-order constraint 1nterdeoendencv. (1) Essentially, 

this means that a higher-order objective, shared by a group 

of subunlts, has forced a need for greater Interdependency 

among the subunlts of the group. What has happened Is that 

In the new "tighter" system, the pooled and sequential 

Interdependency has been spread to more (sometimes al1) 

members of the interactive group. This kind of 

Interdependency has a direct Interpretation In the WOBG 

which will be discussed in the next subsection. The third 

kind of Interaction bug from section 3.1.2 of course arises 

from the higher-order constraint environment. (There are no 

examples of this kind of bug In the example of section 2; 

higher-order constraints were deliberately kept out for the 

(1) 
I think that the Introduction of the "design 

optimization" term here Is very unfortunate. The point Is 
that the subunlts have become more interactive due to the 
presence of a higher-order constraint. In this case, the 
constraint happens to be that the units must Interact In 
order to achieve an optimal design. However, In the next 
subsection I will discuss other higher-order constraints 
which cause ehe same Increase in interaction. 

■ in nnm-iad'-'-11- ■ •  - : " ■ •- ^ -' -'- 
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sake of simplicity.  There will be examples of this kind  of 

bug later In the thesis.) 

These  three  types of  tnterdependency 

form the  semantic  roots  of  the  bugs considered  by my 

program.   In  the  following subsection we will examine the 

way  these  real  world  organizational dependencies  are 

modelled In the world of buslnes games. 

3.3 Bugs in. WOBG models 

Business games provide a laboratory for 

teaching managerial decision-making. Since most Important 

management decisions Involve resolving conflicts (or 

possible r.onf 1 lets- In the case of planning) arising from 

subunlt Interdependency, the three kinds of 

Interdependences discussed In the previous section are 

emphasized In many business games. And, of course, with the 

three   Interdependencles  come   the   three   Interaction  bugs. 

Pooled Interdependency arises from a 

natural sharing of resources by different parts of the 

game-player's     "business". The     business     game  contains a 

very well-defined set of "resources" (cash- salesmen- 

productIon-1Ipes- etc.) which the player must manipulate 

accord  ng  to certain   specified   rules of  play.   (1)     The  basic 
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Idea Is to accumulate certain resources which are designated 

as "assets". There are a variety of strategies for 

accumulating assets (e.g., use research, do some 

advertising, learn about market trends, etc.). The 

Important point for us Is that the Implementation of ^a* 

strategy requires manipulation of various subunlts of the 

Player's "business". These subunlts share the pooled 

resource of £aih. Since cg§h Is In limited supply, an 

Interdependency Is set up, and conflicts arise. Poor 

understanding of this pooled Interdependency gives rise to 

section l.l.l's bug type (1): "unexpected conflict arising 

from competition for shared resources." 

A much more Interesting aspect of the 

particular game I have selected Is the sequential 

Interdependency among subunlts. First of all, note that 

some of the activities of the subunlts are "long-term" 

(research and development, training saleo personnel, 

constructing additional production capacity, etc.), while 

others are "short-term" (advertising, factoring accounts 

receivable, hiring, etc.). Second, there Is considerable 

linkage between the requirements of some activities and  the 

(1) This discussion Is based on the actual business game 
presented In Appendix A--lt might be a good Idea to glance 
over the description of the game to give yourself the flavor 
of what's going on. 

-^M    m^-m* HMMMMfe 
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"outputs" of others (production provides units to sell, 

hiring provides employees to train, etc.). Finally, the 

game contains a rather rich "possibility space" for any 

given strategy If the time-scale Is long enough. That Is, 

there are a variety of non-Independent ways of going about 

achieving a given task over time. All of this (plus the 

addition of probabilistic occurences over time) adds up to a 

complex pattern of sequential dependecles, which In turn 

gives rise to bug (2), "weak performance due to poor 

perception of time-phased occurences". 

It  Is  cLaracterlstlc  of the game used 

here (and of most other business games) that the pooled  and 

sequential   Interdependences   are  frequently made  more 

Intense by "higher-order  constraints".   These  constraints 

arise  from  the activity  structure of the game.   The key 

factor Is that  various  activities  and  functions of  the 

organization  depend on  the outputs of more thgn QQZ  prior 

activity (note that this was not the case In the example  of 

section  2,  and  thus  this  problem was  avoided).  I can 

present a detailed account of these  mutual  Interdependency 

relationships  only  after  I  discuss  the way the game Is 

modelled In MSL ( I will do this In k.k).     For now. It  will 

suffice  to  say  that two kinds of higher-order constraints 

are distinguished: the kind In which several activities (or. 

■■■■-■ —-'-■—,--" 
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re usually, chains of activities) must combine to  provide 

resources  for  another activity,  and  the kind In which a 
> 

number of activities can  combine  In  various  unstructured 

ways to achieve a functionally-determined goal. 

This section has been devoted to filling 

In rather general background Information about the kind of 

bugs tho program knows about and how these arise naturally 

In real world systems. We now go on to an examination of 

how the program Incorporates some knowledge about these 

bugs, and how It goes about using this knowledge to debug 

models. 

■   - -  -       - --'    - -     "-  
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k tism Ihs.  program works 

in this section 1 will present a program 

which finds the kind of Interaction hugs discussed above. 

An example of program operation has already been shown In 

section 2. From this example, the following pattern of 

program operation 's evident: the program starts with a 

model represented In a special formal language; It takes 

th[s model and produces a simulation of It; If the user 

finds a discrepancy between his expectations of model 

performance and the results of the simulation, he presents 

the program with the goal cf eliminating the discrepancy. 

The program then attempts, using both the model as 

originally stated by the user and the results of the model's 

simulation, to achieve that goal; In the course of falling 

to achieve that goal (1) , the program finds features of the 

model which It considers to be unintended causes of the 

fa 11ure--bugs. it then suggests these bugs (in order of 

"likelihood") to the user, leaving him to take the next step 

(and perhaps re-lnltlate the process). 

This  section  considers  each aspect of 

(1) The program should  fall  to  achieve  al 
goals!     (The   "almost"    Is   due   to 

Imost al 1 user 
goals! iThe "almost" Is due to probabilistic 
considerations.) Otherwise, there was not a bug and the 
simulation would have achieved the goal In the first place. 
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this process In turn. It begins U.l) with an examination 

of the model specification language, providing a firm basis 

for understanding what the program does and does not know 

about the user's model. Next U.2), It describes the 

simulation of the model and the way the results of the 

simulation are presented to the debugger. Continuing along 

the dobusglng process, section U.3 deals with the way user 

goals are formed and the way In which the system handles 

goals. Section h.h can then talk about how the program's 

deductive mechanisms pursue goals and locate bugs—the real 

guts of the debugging problem. Finally, there Is a short 

section (I».5) on the way the program uses real-world 

knowledge In the debugging process. 

Into the heart of darkness... 

«♦.1 Ili£ model spec I -tcation language 

In order for the program to use the 

simulate-and-lnvestIgate method for debugging models, the 

models must be represented In a form that Is executable (by 

the simulate-) and a form that Is examlnable (by the 

problem-sel\Ing routines). The model specification 

language (MJL) is an attempt to combine these two necessary 

forms In a s ngle language (which also purports to be fairly 

 .... ■■■,... A...—.i.fa.i-..,-.!:—*.^^.^... __i^^a 
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user-oriented!). 

MSL Is a set of simple primitives which 

can be used to describe models--especlal1y business game 

models (1) . An MSL specification consists of an 

(unordered) collection of the three basic primitives 

♦ACTIVITY, »EVENT, and »FUNCTION. The basic primitives are 

further described by modifying constructs. The model 

manipulates user-defined value/term pairs called "resource 

variables" (e.g. (1000 CASH), (SAM SALESMAN), etc.). An 

example of MSL specifications appear on pages 17-18, and In 

Appendix B. This section contains a brief description of 

the syntax and semantics of these MSL primitives. 

The basic MSL construct Is the 

♦ACTIVITY. The concept of "activity" used here Is precisely 

similar to the usual business sense of the word: a 

well-defined organizational task which processes some 

commodities or Information that Is used by the organization 

(see section 3.1.2; see also the WOB |9| for Its Information 

on activities). An «ACTIVITY also corresponds to a submodel 

(2)  --that  thing  that the user is supposed to have a good 

(1) No claim Is made for any "completeness" or "sufficiency" 
of this set of primitives. These are simply constructs 
which can be used to express my game models. 

(2) We will see in a few minutes that »EVENT's and 
♦FUNCTION'S are also submodels. 

■ -   —  ■ ■naaaMMai   '■     -- - -^-^^ amum 
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grasp of (see 5.1.1).The *ACTIVITY specification looks like 

(♦ACTIVITY  <*ACTIVITY-name> <modIfIers>) 

(1) 

As Is usually the case, the modifiers are the nr st 

Interesting part of the specification. 

One modifier which Is almost always 

present Is the *PREREQUISITES specification. This 

construct expresses the necessary Inputs of an *ACTIVITY. 

The *PREREaUISITES specification 

contains an arhltrary number of 

(♦PRESENT <resource varlable>) 

forms grouped (Implicitly) by OR or (explicitly) by AND. 

The basic Interpretation Is that the named <resource 

varlable> must be present (2) for the «ACTIVITY to be 

Initiated. If there is an AND specification, then (as one 

would expect) all of the "AND'ed" resource variables must be 

♦PRESENT.  Thus, In 

(1) I will use the following notation: "<" and > are 
metalinguistic brackets which surround metalinguistic 
statements.  Everything else belongs there. 

(2) Clearly, there are the obvious extensions 
"♦MAY-BE-PRESENT", "MUST-BE-PRESENT", etc. I have not found 
these concepts necessary to express the models I have used. 
Therefore, they are not Included In the MSL, even though 
their Introduction would be straightforward. 
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(♦ACTIVITY SALES-CALL 
(♦PREREQUISITES 
(AND 

(♦PRESENT (1000 CASH)) 
(♦PRESENT (1 UNIT)) 
(♦PRESENT (SOME SALESMAN)) 

) ) 

there must be (1000 CASH), (1 UNIT), and (SOME SALESMAN) for 

SALES-CALL to be Initiated. 

Some further comment Is necessary on the 

quantification mechanism of ♦PRESENT. The "SOME" In (SOME 

SALESMAN) represents any name of a SALESMAN In the 

model.That Is, 

(♦PRESENT (SOME SALESMAN)) 

will be satisfied with 

(MARK SALESMAN) or 

(DON SALESMAN) or 

(STEVE SALESMAN) 

Numerical  quantifications carry  an  Implicit  "at  least" 

modifier.  That Is, 

(♦PRESENT (1000 CASH)) 

r immhMinlin ■■ i     i     n ^-,_  ^  A - ■ ■'■ ■   
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(10000 CASH) or 

(1000 CASH) 

but not   (999 CASH) 

The '"at least" modifier may be explicitly stated, or may be 

changed to AT-MOST, as In 

(♦PRESENT (1000 CASH) AT-LEAST) 

(♦PRESENT (5 ERRORS) AT-^OST) 

The  "outputs"  of an  *ACTIVITY are 

expressed by the *OUTPUT and »REMOVE constructs: 

(♦OUTPUT <resource varlable>) 

(♦REMOVE <resource varlable>) 

which add or delete the named  resource variable  from the 

model 's resources. 

An  ♦ACTIVITY construct may be further 

described by: 

(♦TAKES <nunber>) 

to Indicate that If the ♦ACTIVITY Is Initiated In time-slice 

Hz Its outputs do not  become available  until  time-slice 

-  in !■ aMMlMJMimi—aMinlMIMIi— --—— "  
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e use of an »ACTIVITY  Th.. 
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(»SCHEDULE <number>) 

ITY can  be scheduled 

"SCHEDULE (ON <.EVENT-name», 

t0 a"OW the schedutlng of an. «TIVITY only in th e  same 

(1)  Again,   obvlouslv     M- 

ot 
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time-slice as the occurence of the named *EVENT/ and 

(♦SCHEDULE (EVERY <number>)) 

to limit the scheduling of the *ACTIVITY to time-slice 

<number>/2x<number>/3x<number>/etc. 

The above modifiers, along with the 

user's ability to create resource variables and provide 

arbitrary »ACTIVITY structures, allow enough flexibility to 

express all of the «ACTIVITY'S necessary to model the game 

in Appendix A (see the model In Appendix B). There are, 

however, other kinds of submodels to be considered. 

Another basic construct (I.e., 

submodel-specifier) available to the modeller Is the «EVENT. 

This Is used to express parts of the model which are 

"outside of the system"--beyond the organization's direct 

control. These outside Influences are often modelled as 

probabilistic occurences, so that «EVENT's are usually 

associated with the probabilistic parts of the model. 

♦EVENT Is very similar to «ACTIVITY In basic syntax: 

(♦EVENT <«EVENT-name> <modIfl[ers>) 

but the modifiers are somewhat different. 

Instead of the «PREREQUISITES 

specification, a «CONDITIONS list Is stated: 

...^.-..^.-^   ■ ■■MifcBiMnin mj        r i   -   -       - . - ----- -  ---II      ■  i^lhii  i i   in in   ■   il ■■ 
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(♦CONDITIONS <boolean expression)) 

That Is, the simulator expects the body of a »CONDITIONS 

list to evaluate to "true" or "false". Usually, the body 

contains some combination (perhaps related by AMD or OR) of 

♦FUNCTION names (1) (see below). The Intent Is that the 

♦EVENT may not be Initiated unless the <boolean expression) 

evaluates to "true". 

Usually »EVENT'S affect part.cular 

♦ACTIVITY'S.The suscteptlble »ACTIVITY'S and the actions to 

be taken by the ♦EVENT are expressed within the ♦EVENT by 

the ♦ACTIVITIES modifier: 

(♦ACTIVITIES Ullst of ♦ACTIVITY-names>) <actIons>) 

If an ♦EVENT contains an »ACTIVITIES construct. It can be 

Initiated only In a time-slice In which at least one of the 

named ♦ACTIVITY'S Is  scheduled. 

One rather unusual <actIon> which can be 

taken by an ♦EVENT Is 

(1) These ♦FUNCTION'S usually express a probability with 
which the ♦EVENT occurs In a given time-slice. The 
simulator sets up a probabilistic event (no confusion, 
please!) on the related sample space to express the 
♦FUNCTION. It then calls a random number generator. If the 
value returned by the RNG falls within the defined event,the 
simulator assigns "true" to the value of that ♦FUNCTION. 

 —  — -   MMi^MMkMMMMkaMMM ■   -       -         - 
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(♦CANCEL) 

This means that the Interrupted »ACTIVITY has been 

permanently disrupted, and Is to be unscheduled. (Of 

course. It can be rescheduled later.) In all other 

respects, »EVENT's are treated just like »ACTIVITY'S. 

The final basic construct In MSL Is 

♦FUNCTION. It expresses a functional relationship between 

variables In the modpl, and. In general, accounts for 

Information flow within the model. It Is thus slightly 

different In spirit from the resource-handling »ACTIVITY'S 

and *EVENT's. Nonetheless, It shares submodel status (1) , 

and Is similar In syntax to the other two basic constructs: 

(»FUNCTION <»FUNCTION-name> <modlfIers>) 

»FUNCTION'S are not "scheduled"; rather, they are Invoked by 

being mentioned In other constructs (just as In programming 

language function calls). Thus, whenever SALES-PROBABILITY 

(see section 2) appears In the model (except In the 

»FUNCTION   definition,   of   course),    the   »FUNCTION 

(1) It Is Important to recognize that Information-handling 
activities are submodels at the same level as other 
organizational activities. Forrester stresses this point 
In |3|, and seems to use the homogeneity of basic submodels 
successfully. Of course, the uniform submodel constructs 
also lead to a gain In modelling efficiency and a lessening 
of the cognitive load of the MSL user. 

-■■-•:j — ^ ■ 
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SALES-PROBABILITY  will   be   Invoked. 

The analogous construct to 

»PREREQUISITES   and   *CONDITIONS   In   »FUNCTION   Is 

(♦ARGUMENTS   <argumentl>   <argument2>   ...) 

which behaves like the usual argument-list In programming 

language functions. Missing arguments cause an "error" 

which   stops   the   simulation   (1)   . 

The  analogy  to  »OUTPUT   Is 

(»RETURN  <expresslon>) 

where   <expresslon>  can  be  a  combination  of     »FUNCTION    names 

and   the  special   function-representing  constructs 

(»TABLE   (<*ARGUMENT-name>   <»RESULT-name>) 

<argument/result   palrs>) 

(»SUM  UP   (<varlab!e   ran^p))   <1Irear   factors)) 

This is about all there Is to the MSL. 

The semantics of »ACTIVITY'S and »EVENT's are developed a 

bit further In the next section. »FUNCTION'S are dealt with 

fn k.k.2.l. However, no really detailed descriptions are 

presented anywhere.     There   Is   little   point   In   It.     The     only 

InMr15   ,S/   0f  course'   the   klnd  of  bug  we're mil   Interested 
III       II C l   vT   « 
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purpose of presenting MSL Is to allow the reader to 

understand the examples and judge what the program does and 

does not know ahout a particular model. 

Almost all of what the program knows 

about any given model Is In the MSL specification. (It 

knows a few other things discussed In U.S.) MSL can be 

simple because the models considered are quite simple. As 

the models become more complex we expect (by conservation of 

complexity) that MSL will become more complex. The hope Is 

that MSL contains something general enough to handle some 

kinds of additional model complexity without additional 

language complexity. This "something" Is the basic 

philosophy of submodel structuring which Is reflected In the 

MSL. Thus, I have tried to emphasize this basic structure 

rather the details. In the next section we follow the 

course of the program's debugging process and examine the 

simulation of MSL models. 

4.2 SlmulatIon as ^ wav of doing things 

Simulation Is a technique for observing 

the behavior of models. In the absence of analytical and 

other "high-level" tools (like educated guesses), simulation 

Is the only way to find out wha a model "does" In any given 
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situation. In the model-debup;p;lng system presented In this 

thesis, the simulator sets up the basic feedback mechanism 

between user and APS. 

At the very least, any APS should 

provide a facility for checking out model behavior with 

simulation. That Is, the user formulates his model, tests 

It via simulation, changes It If he doesn't like what he 

sees, and reslmulates. For reasons discussed In the 

Introductory section. It Is necessary to go a step further. 

The program described here attempts to aid the user In 

discovering why the model does not perform as he expects It 

to . 

Therefore, this section will concentrate 

on simulation as a way of Initiating i-he debugging process. 

This emphasis Ignores very Important Issues of presenting 

simulation results to the user. In fact. It completely 

downplays the Importance of the simulator Itself, 

concentrating only on the Interaction of the simulator and 

the deductive mechanisms of the debugging program. Thus, 

In this section I will proceed to finesse the simulator and 

move on to the more relevant problems of representing the 

knowledge gained by the simulation In such a way that It can 

be used by the debugger. 

„.. ,.-   -■-   —■.-.•...^...^.-^.i—....—- -■■»■-■ififctillM»i)iiiliii(itiiifr»iiri irf« ■fiiMiairlm 
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If.2.1 Ili£ simulator finessed 

In this section I wfll very briefly 

describe the simulation scheme used In the program. The 

whole simulation philosophy presented here Is kind of 

strange as viewed from the standpoint of "normal" simulation 

programs. This Is due to the presence of two major design 

criteria not usually found In the area of simulation 

programming: 

(1) Adherence to the "user only knows local submodel 

Information" canon ennunclated earlier (sections 1.3.1 

and 3.1.1) 

(2) The goal of representing knowledge found by the 

simulation In such a way that It can be used by the 

debugger 

The first criterion gives rise to those funny MSL constructs 

which mysteriously appeared In the previous discussion. 

It also motivates the style of simulation described In the 

rest of this section. The second criterion determines the 

actual Implementation of the algorithm, and Is dealt with In 

the following subsection. 

In MSL, the Information pertaining to a 

- - --- — -.-■ .  ...  -. ,_-_..■■..■_..  M-M 
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particular submodel Is found only In that submodel. The 

kind of "Information" varies from submodel to submodel (as 

described In k.l), but basically, the following 

specifications are necessary: 

--resources needed by the submodel 

--resources produced by the submodel, and the length of 

time necessary to produce them 

—explicit policy for the conditions  under which  the 

submodel should be activated 

The  basic operation of the simulator Is 

then straightforward.Each submodel  Is activated when  Its 

(user-specified)  explicit  pre-conditions  are  satisfied, 

provided that all of Its necessary resources are available. 

If  the user does not specify pre-condttIons (via »SCHEDULE 

and *C0NDITI0NS-see k.l),     the  submodel   is  activated 

whenever  ,ts necessary resources are available (subject to 

♦PRIORITY  restrictions,  of  course).   When   the  time 

(specified by *TAKES) for submodel activity has elapsed, the 

output  resources of the submodel (If any) be-ome available 

to the whole model.    This process of cycling through 

submodels activating  "ready" ones,  continuing  "running" 

 im ■—IIIIIB —I 
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ones/ cleaning up finished ones, and augmenting and 

depleting resources all along continues for the duration of 

the user-specified run-length. 

Now anyone who has ever glanced at the 

guts of a simulator knows that I have just finessed 

Inumerable details (as well as a few Important Points). The 

algorithm used In the program Is actually a bit more 

sophisticated and a great deal hairier than the one 

"described" above. For example, I have not even mentioned 

the rather ticklish problem of handling probabilistic 

occurences In this context, nor the design decisions for 

priority-scheduling of already-running submodels. ! am 

deliberately slufflng the details here because the simulator 

Itself Is not very Important to the thesis as a whole. It 

Is its output, the SIMULATION-HISTORY context, that I wish 

to emphasize here. 

h.1.1   Simulation history ani SIMULATION-HISTORY 

The form of the output of a simulation 

program Is always a key factor In Its usefulness. In the 

debugging system presented here. It Is an essential link 

between  the  model  and  the  deductive  mechanisms of the 

■ • •■--■■- - - - -^^—Bttmamm  - - -   ^,.^^^ 
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debugger. As discussed above, much of the task of the 

simulator Is to present the knowledge gained by simulating 

the model In a form that can be used by the rest of the 

program. This Is of course the old artificial Intelligence 

task of representing knowledge In a form that can be used by 

procedural deductive mechanisms. 

The style of representation I have 

chosen for the simulation knowledge Is the Simulation 

history. Now this Is hardly start 1 Ing—s imulat Ion 

histories are frequently used to describe the behavior of 

systems. But here I wish to extend the concept somewhat. 

In my program, the simulator constructs a simulation history 

(called SIMULATION-HISTORY) which then becomes the 

PfPblenrSPlvtrm envlronm^nt of the debugger. By this I 

mean that from the point of view of the deductive mechanisms 

In the debugger, the "world" Is a simulation history; I.e., 

a sequence of facts about the model which are true at 

various times determined by the simulation. The debugger 

lives Inside this simulation history. The things that It 

knows about the "world"—the kinds of knowledge found, the 

way events are related, etc.-- are the facts and rules of 

the simulation history world (1) .  in thinking about the 

(1) Except for, as we shall see later, the facts  It  knows 
about the "real world" of business games. 

k ■---~----- — ■- - ■ ---   — ■■^■■■--—^-^ ^m^.    -  " 
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debugger. It Is well to keep In mind that It Is a citizen of 

the simulation history «vorld. 

Well then, let's go slumming and look 

around the simulation history world ourselves for a few 

rollicking moments. Consider some set of observational 

variables on a simulation model. Then a simulation history 

can be thought of as a recording of the "values" of these 

variables at various Instants of slmulat lon-tIrr.e. The 

Interesting questions are what observational variables 

should be used and how the record should be organized. We 

will see that these questions are Important with respect to 

thR usefulness of the simulator to the debugger. 

For the simulation to progress from one 

time Instant to the next, the simulator must have a record 

of the state of the simulation. The simulation state of 

these simple MSL models consists of four main pieces of 

informat ion: 

(1) the value of each "resource variable" (see k.l)  at 

the end of each time-slice (1) 

(2) a record of the »ACTIVITY'S which were Initiated In 

the tIme-slIce 

(1) A time-slice Is one ker-chunk of the simulator. 

■ M^k^MUMMH  --   -■ - - ■ ■ — - -  , ^ ^. *-. : w^^ 
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(3) a record of the «EVENT'S which occur and the 

♦ACTIVITY'S  they affect 

CO an Indication of the stage of completion of each 

"running" (I.e., previously Initiated and not yet 

complete)   »ACTIVITY and   *EVENT 

Therefore, the simulator needs these four pieces of 

Information at the end of each time-slice In order to go on 

to  the  next  tlme-sltre. 

But what does this have to do with the 

"observational variables" for the simulation history? First, 

remember that the "observer" In this case Is the deductive 

mechanism of the debugger. Now, harking back to si 1 that 

was said In sections 1 and 2 about debugging by 

problem-solving, we can see that the debugger Is usually In 

the position of trying to change the course of the 

simulation In some way (to cause some desired outcome which 

causes another desired outcome, etc... which eventually 

causes the user's desired outcome). In order to decide 

whether   It  can make  the change   (1)   It    must     know    something 

(1) Of course. It must also decide whether the user wants 
the change to be made. This part of the problem Is 
discussed   In   k.k.2. 
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about the simulation. Specifically, It must know the state 

of the simulation and ways to change that state (1) . The 

ways to change the state are encoded In procedural deductive 

mechanisms to be described later (l».U,l), The state of the 

simulation can be provided by the simulation history. 

Therefore, the observational variables for the simulation 

history are just the state variables discussed above (2) . 

Well, since the simulator needs the 

values of the state variables at the end of each time-slice, 

the program need only keep track of these values In some 

useful fashion. The problem now becomes one of organizing 

the simulation history. In order ot think about such an 

organization, we can look back to section 2 and remember a 

bit more about what the deductive mechjnlsms do with the 

simulation history. 

The deductive mechanisms usually find 

themselves playing around In their little simulation history 

world In two ways: 

(1) examining a single time-slice to see whether a 

change can be made at that time 

(1) This Is Its "world knowledge" of the simulation history 
wo r 1 d. 

(2) A schematic representation of these state variables  as 
they appear In the simulation history Is found on pp. 21-23. 

 ■  -         mmimA 
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(2) examining a large segment of the simulation to 

choose a likely time-slice for scheduling something 

new, to follow the course of an »ACTIVITY or »EVENT, to 

pursue the consequences of a proposed change, or (as we 

shall see later In this section) to handle higher-order 

constraInts 

What we need Is a good representation for facile handling of 

time-slices and (usually contiguous) groups of time-slices. 

The representation should also allow ea:ie In the bulldlng-up 

and manipulation of the whole history. 

Such a representation Is the Conniver 

Context I20|. The simulation history Is Implemented as a 

Conniver context with the unlikely moniker of 

SIMULATION-HISTORY. Each time-slice Is a laver |20| of the 

context. This Conniver Implementation Implies the following 

relation between time-slices: the simulator "grows" 

SIMULATION-HISTORY by adding on new time-slices; changes 

made to the data in a new time-slice are invisible to 

earlier time-slices, however, the status of any datum can be 

determined In any time-slice. This certainly gives us the 

record of the simulation, history that we want. Conniver 

also allows any part of the context to be regarded ?z a 

separate context. The importance of this is that the 

Content  can  then  be  used  as  the  database,  or,   more 
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precisely, as the working environment, for some set of 

programs. That Is, the programs In a given context work 

only with that fignlext as a knowledge base. Thus, we can 

see that the deductive mechanisms of the debugger can "live 

Inside" the simulation history by simply using 

SIMULATION-HISTORY as their gPp^t. Furthermore, the 

deductive mechanisms can live Inside any part of the 

simulation history which they must examine. Their world can 

be a single time-slice or a large, program-edited piece of 

the  history. 

We will  see  that this ability to live 

Inside arbitrary  pieces  of  SIMULATION-HISTORY  Is  a  key 

requlstlte  for  the deductive mechanisms of the debugger. 

For the deductive mechanisms to work, they must apply  their 

procedural!y-embedded  knowledge of how to change the course 

of  the  simulation  to  carefully chosen  parts  of  the 

simulation.   This  Is why the  simulation history and Its 

Implementation as SIMULATION-HISTORY form such an  Important 

part of the program.  In the next section, we will find that 

the   SIMULATION-HISTORY   representation  gains  further 

Importance when the debugger generates hypothetical  states 

of the simulation. 

'».S Goals and envi ronp^ptQ 

■ --■■■ ■• ■ ■■■■ ■ 
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Throughout the thesis I have been using 

the word "goal" to describe a variety of phenomena. I have 

spoken of user goals, system goals, and submodel goals. In 

section 2 I Introduced another construct containing the word 

"goal": 

(*GOAL <strange words> <numbers> <lots of parentheses)) 

which purported to represent the various other kinds of 

goals to the program. In this section I will discuss what 

these parenthetical thlngees mean to the program. In the 

next section I will talk about how they are created and 

manipulated. Here I describe only goals miä *G0AL • s--i .e ., 

the common structural aspects of »GOAL's. 

A goal expresses a desired state. In a 

debugging context this desired state is almost always 

Inconsistent with the actual state. This Is because the 

user has found a discrepancy between reality and expectation 

and has thought of a desired state In which the discrepancy 

Is resolved. Thus, the desired state, reflecting the fixed 

discrepancy. Is Inconsistent with the actual state. In the 

program presented here, the user can ask the program to 

produce this desired state (given the model and the 

simulation history-see section 2). (1)  The request Is made 

(1) As discussed elsewhere, the program falls In Its attempt 

■ 
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via a »GOAL statement: 

(♦GOAL <achieve desired state>) 

What does It mean to "achieve the 

desired state"? The user Is asking the program to change 

the course of the simulation. The program goes about this 

by first creating a hypothetical simulation state 

(time-slice) which Includes the desired state. Then It 

attempts to make the rest of the simulation history (I.e., 

the previous time-slices) consistent with the new 

hypothetical time-slice. (1) This Is done by the creation 

of a new *G0AL 

(*GGAL <make previous time-slice consistent with new one>) 

This new *G0AL Is clearly of the fo rm 

(♦GOAL <achleve desired state>) 

and can thus be handled exactly like the user goal. The 

program can thus recurse merrily along until It cannot 

achieve a desired state--!.e., until It falls. 

Now then, let's take a closer  look at 

to produce the desired state, but this Is not Important—t^ 
the discussion of this section. 

(1)  This  "work  backwards"  methodology  Is due  to   the 
debugging philosophy of tracing a bug from Its manifestation 
back to Its cause. 
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this process. Each *GCAL requests a specific change to a 

specific local environment (the t lme-sl Ice.) . Thus, each 

♦GOAL Is attempted In the context of a local constraint 

environment represented by a single time-slice of the 

simulation history. (1) If the *G0AL Is achieved. It will 

define a new environment which Is Inconsistent with the old 

time-slice (because of the changes wrought by achieving the 

*G0AL). This new environment Is then consistent with the 

user's desired state, but Inconsistent with the old 

simulation history. The program will then use this new 

local environment as a basis for defining the next desired 

state along the line toward making the whole simulation 

history consistent with the user's desired state. The 

program Is, In effect, constructing a new hypothetical 

simulation history which results In the user's desired 

state. (2) 

Thus, environments are Intimately 

related to the semantics of *GnAL's. Each *GOAL Is 

constrained  by a  pre-specIfled  part  of  the  simulation 

(1) Not quite. As we shall see In a second, multiple goals 
are achieved with respect to a local constraint environment 
consisting of several time-slices. 

(2) The next section deals with the problem of how the 
program constructs this simulation without destroying the 
original Intent of the model. Specifically, section k.h.2.1 
gives a better picture of what Is "constraining" about a 
"local constraint environment". 

 :   ,  
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environment--that part whFch It   ic o h ft ,S suPPOSed to change.   The 
achfevement  of  a  *G0AL  r^n  M, 

UUAL  c^n  therefore  be 
transformation: 

seen as a 

^GOAL 

\m\c\ tmwmwt new w\\}\wv)mri 
';  tranSf0r™t'-   "    a     .oca,     phenomenon.       HoKever     the 

ejects of the  transformatlon are non.Iocai_      ^ ^ 

ZT the ,oca'env,ronTCnt ^ ^ " •— -t the gIoba) envIronment  smee the eve„tual goal of the 

Problem solver Is to creat* 
Create a C0"s^tent simulation history 

whrch  results  In  the  user'«;  M  ,  . 
S  deS,red  State'  the global 

environment  must  be maH*» 
rnr   , made  co^'stent  with  this  new 
inconsistent piece: 

i=zr> 

w'\m\ a\\j\fo/)WtMf ^ mtonwr      j^ sWfc 
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In order to make the global environment 

consistent, the program must trace down the effects of 

changing that local piece. In other words. It must examine 

the way .hat local piece Interacts with other pieces of the 

global environment: 

^■Oi^ In o/ie. Ii'oe      si^}^ 
But this Is exactly what we want. The user Is Incapable of 

following the Interactions of the model. If the program Is 

to help the user find the "Interaction bugs" thus created. 

It must have some mechanism for trac'ng Interactions. This 

mechanism Is the problem-solver. 

The problem-solver uses a *G0AL to 

express a global environment perturbation. It then uses the 

deductive mechanisms described In the next section to follow 

that perturbation throughout the local environment, the 

local  change  at  each  point  being determined by a *GOAL. 

-■ 
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When the program comes to a point where the perturbation 

cannot he continued (I.e., where a *G0AL falls). It has. In 

effect, discovered a part of the environment which cannot ^e 

EäAs. JSL conform to the user's desired environment. It has 

traced the Interaction path to Its roots--It has bracketPd 

the bug location between the user's desired simulation state 

and the user's desired constraint which gave rise to the 

Interaction (see ^,«1.3). 

Thus, *GOAL's are the vehicle for 

exploring the Interactive behavior of the model. As we have 

seen above, the use of *GOAL's In this way requires 

sophisticated manipulations of local environments. In 

order to tie down some of the concepts discussed In the 

previous paragraphs, I will now discuss some of the problems 

the program faces with respect to this environment-handling. 

First, each «GOAL must be achieved with 

respect to a local environment. That Is, the *GOAL must 

only "see" the constraints of a local environment (not the 

whole thing) (1) , and must directly affect only that local 

environment. Otherwise, the distinction between local and 

Interactive  behavior  Is  lost — there Is no such thing as a 

(1) This Is due first to the nature of the problem-solving 
process-- set up a local environment and then make the next 
local environment up the line consistent with lt"--and 
second to the debugging philosophy espoused In k.k.2.l. 

_.     _- . — ._ .     — ,««—»____ ._^___-^1^—__ MMBMMM 
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"perturbation". 

Fortunately,  the  environment   to   be 

examined »s the SIMULATION-HISTORY  context.  We will see in 

h,k.2.1     that  the  required  local environment is (usually) 

just a TIME-SLICE of the SIMULATION-HISTORY.  The *G0AL  can 

thus be made to "see" only a local environment by making the 

required  TIME-SLICE its working environment (as in k.2)   (1) 

The  Context  structure  makes  the   relation   between 

TIME-SLICE's  evident  (I.e.,  because  each  is  a Conniver 

-UmLL),  so  that  the  distinction  between   local   and 

Interactive  constraints   is   explicit  in  the  built-in 

(Conniver)  semantics of SIMULATION-HISTORY. 

Now the »GOAL must also be made to 

affect on,y a local environment If the semantics discussed 

earlier are to be preserved. It would seem that this is 

just as easy: simply keep the TIME-SLICE In question as the 

*G0AL's working environment, and all changes will explicitly 

have the required locality. However, there is a 

complicating factor found In all searching problem-solvers: 

the problem-solver must make provisions for discarding an 

old line of attack and beginning a new one. This Is the old 

problem of backup which has been discussed extensively   In 

ÜM^L'?"'! Sül!* S0  slmple  for multiple  *G0AL'S,  as we'11 see In a second. 

i^UUUkawydtb^ 
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i7| and |19|. 

Ths backup problem Is germane to the 

debugging process because the debugger usually attempts to 

find all possible causes of a particular discrepancy (In the 

hope that one of them Is the actual bug). Thus, It will 

follow down one line of attack, fall, and try another. It 

must therefore be ready to erase the consequences of the 

line to be discarded. But this Is a particularly hard 

problem for the debugger. Here, the tracks leading to 

failures are the key to the rest of the process. They 

cannot be simple "erased", but must be preserved In some 

form which the program can use to suggest bugs and to 

explain Its actions to the user see U.U.3). 

Furthermore, while the effects of each 

♦GOAL must be restlcted to a local envlronmet, the effects 

of a!1 the ♦GOAL's must create a new consistent environment 

(1) . Thus, the program must maintain some new environment 

which localizes the effects of the ♦GOAL's, allows a 

controlled backup with preservation of the backed-over 

Information, and which forces consistency of all affected 

environments.  Certainly, SIMULATION-HI STORY wl11 not do. 

But something like It will. The program 

again  uses a  lavered-context structure.  In each laver It 

(1) They must. In fact, create a new simulation history. 

 , , ■■ ■ - . i , - ^_ — . ;      -- :liai  niij^-----—--"■--■■■—" .., ^,. ..-■■.. . . . ■ - 
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records the changes made by a *G0AL to the particular 

TIME-SLICE Involved. It then appends this new laver to 

SIMULATION-HISTORY and uses this new augmented context as 

the working environment of the debugger. Now, remembering 

the little discussion of context semantics In k.2 (or, 

referring to 1201), we see that this causes the following 

effects: 

(1) The effects of a *G0AL are certainly localized 

since they occur only In a single laver which 

corresponds to a single TIME-SLICE. 

(2) The debugger can always see a consistent 

environment by looking up the augmented 

SIMULATION-HISTORY as far as the last affected 

TIME-SLICE; the semantics of context then say that 

the data seen by the debugger Is just what was In 

SIMULATION-HISTORY before (which Is consistent via the 

simulator) except where contradicted by the parts that 

were changed by »GOAL's (which are consistent (up to 

that point) via the deductive mechanisms). 

Perhaps It Is well to Interrupt here with an explanatory 

diagram... 

    -    -   -     - -■ -    . --   ■        ■-         ^. MM>—i^fc—M—^»^ 
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TIME-SLICE 1 

this is a 
SlMle cortM as it 

^"Wfleir olia^^        TIHE-511CE X 
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which fs/ due to the semantics of  context, equivalent to: 

SIMULf\T|0K)-HISTORV 

UcWJsiH\)lATIO^ 

TIME-SLICE;^ 

TlhE-SL(CE) 

which Is certainly an easier conceptualization of what has 

gone on so far. However/ the first picture Is necessary to 

explain 
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(3) The ia^ü wh,ch record the changes made by a äGOAL 

(the dashed parts of the first picture) can be peeled 

off and saved at any time, thus restoring the contra 

to Its original condition and saving the effects of the 

*G0AL (the track toward falure) for further use 

This methodology ffUs the bill so far. Unfortunately, 

there Is one final problem which complicates this little 

Picture (you just knew there would be). 

This complication comes from an as yet 

unseen aspect of the problem-solver: multiple goals. I 

mentioned earlier (section 3) the existence of "h Igher-order 

constraint interdependencles" In the model. (This 

weird-sounding effect was conveniently kept out of the 

example In section 2.) We will see In section ....2.3 that 

higher-order Interdependency leads to multiple goals. That 

is. Instead of simple goals, the program must deal with 

constructs 1 Ike: 

(*G0AL (*AND 

C*G0AL ...) 

(*G0AL ...) 

(*G0AL ...))) 

and 

■ '■-  — —-...—.■. >-—- — 
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(*GOAL (*GROUP 

(*GOAL ...) 

(*GOAL ...) 

(♦GOAL ...))) 

We'll see more about multiple goals later.  For now we  need 

only examine one aspect of their behavior. 

The  raison d'etrg of *AND and ♦GROUP Is 

the expression of the fact that their component *G0AL's are 

not Independent.  That Is, the *G0AL'S  they  contain  share 

common  resources  and  cannot  be  achieved at each other's 

expense.  (This Is how they model  interdependency.)   Thus, 

the notion  of a "local constraint environment" varies from 

the one bandied about earlier.  Here we  must  have  several 

*G0AL's  sharing  a single local environment.   Furthermore, 

because of the interdependence of the ♦GOAL's,  a  component 

*G0AL  that  has  not  yet  been completed  must  "see" the 

constraints posed  by  the completion  of  other  component 

*G0AL's.   Thus,  the  local  constraint  environment might 

cover several TIME-SLICE's. 

Clearly this hairs things up a bit. 

Nonetheless, the program must preserve the semantics of 

these constructs because they are Important effects of the 

model which give rise to their own special bugs (see 

^.2.3).  Actually, given the flexibility of contexts  the 
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Implementation        Is       rather     straightforward.       The     little 

schematic   of  environments   now   looks   like: 

recofcU of cl^|^ wouaW" 

qödU ^^M now otffa^ w 
W TlHE-SUCEy Ae -Vide 

5)HlUTI0KHl£T0R\ 

linkin 

^ the <>mm wuecy ^^ 

3 

5üecial *ADB or 
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10 termS 0f the P'-evrous  discussion  of 
-tUrbatlons,  'ocalandglobalenvfronmen^etc_oth 

has changed except that the  "local"  onv , 
local   environments  m 

have a hairy mlcrostructure of local «n. • 
^^^^ or local environments: 

eAoifoniHe/lf 

low    may 

^uiYoniy^f 
cUfinq 

concept),   .eavmg everything as before. 

Thus'     a       '"OAL       ind.cates       a       .oca, 
Perturbat,o„. The        deduct|ve        ^^^        ^      ^^ 

ProMe.-soWer  foMow  tHroog.  the     ,nteract,ons    defIned    by 

the       model        to       carrw     fk-, 
carry     the     perturbation     throughout     the 

simulation     history     ,n     order     to 

Mroauce       a       consistent 
- ~t.   The ne)<t sect,on cons|ders these ^^^^^ 

«chan.s.s and the,r     ^eracMon    (vla     fanure)    w|th    ^ 

bug-fInders. 

^ ik^£zinz by ai^ieni-^ivL i£ 
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The basic task of the program Is to 

trace a bug from its manifestation to fts source.  This  is 

done by  taking  In  the manifestation as a *G0AL to be 

achieved (as discussed earlier).   The process of achieving 

such a »GOAL Is usually called "problem-solving".  But this 

Is a rather special  use of problem-solving:  the program 

expects  to  fall  In the attempt.  In fact. It Is not until 

after a  line  of attack has  failed  that   It  becomes 

Interesting  to  the  debugger.   In this section we see how 

lines of attack are formed, how they fall, and how they are 

used after they fall. 

The  most   Important  part  of  any 

problem-solving process Is the formation of subgoals  (1) 

Section  I».!*.!  considers the methods  (those deductive 

mechanisms we've heard  so much about)  for devising new 

subgoals  In  order to achieve a goal.   This corresponds to 

asking the "how could we do this ?" question of section  2. 

But In this program, the object of the problem-solver Is not 

this  direct  attack  on  the  problem.   Instead,  the 

problem-solver must make certain  It  does  not change  the 

Intent of the user's model In trying to dsbu- It. 

Thus,   the  process cf attacking the 

riiJSPeC,Ü1|Il' ,n,,:hIs Problem-solver.  Since  subgoals are 

-b^l-fo^i^n^   the   Wh0,e  f™S  '--  '"to 
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user's goal leads directly Into the problem of separating 

the constraints which are In the simulation history because 

of user Intent from those which are artifacts of unintended 

model operation. At certain key points In the deduction 

process, the program determines whether or not It should (In 

terms of user Intentions) make the changes required by the 

deduction. This process of assigning GOOD and BAD REASON'S 

to model action corresponds to asking the "why didn't you do 

this before?" question of section 2. In U.U.2 we examine 

this REASONIng process In terns of the philosophy of bugs 

presented In section 3. 

The REASONIng process leaves the program 

with a failed line of attack. This appears as a stream of 

♦GOAL's, annotated at each point with the BAD REASON that 

triggered further program action. The program must then 

examine the record of the proolem-sol ver to attach blame to 

the proper offending model part; I.e., to find the bug. 

This task of post-mortem recrimination Is the subject of 

U.i».3. 

^.^. 1 IliS.  attack 

Here       we     examine     the     problem-solving 

Phase  of  the  debugging  process. The     key     problem-solving 

■     . -    .      -- - -   -    --     - - -   -   - ill) ml II I    ' I1    ii I ■!< 
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task of  the  pro.ra.  Is  to f.nd the proper local changes 

"rou^hout the global environment which win  Uad to the 

desired change.  Since each desired change ,s represented by 

a •GOAL, the problem-solver proceeds by subgoal formation. 

The  subgoal-format Ion  parts of the 

Program (the "deductive mechanisms" mentioned earlier) are 
responsible  for  flgurIng out how one ^ ^^  ^ ^ 

brought about by another.  As an example of the «ay this 

cause-effect  knowledge  Is Procedural 1y represented In the 

Problem-solver, the INCREASE function  Is  presented here 

The explanation of how INCREASE works „II, lead us directly 

Into the REASONlng methods of k.k.Z. 

The program's main vehicle  for asking 

the "how?" question is the INCREASE .GOAL: 

(•GOAL (INCREASE (resource variable or submodel) 

<amount> <time-slice> (1) )) 

That s,     "goal:   Increase  th 
e   resource variable or  submodel 

by the specified amount in the specified time-slice." The 

user's initial .GOAL is usually of the 'NCREASE type (see 

section 2). This just means that the user's discrepancy Is 

usually    a  deff,c.?ncy of  some   resource variable   (or  lack of 

ilLllclr.t'ir-VA'tl.     ,5      "Ot       «Iven.       the heurlstlcaliy choos es  one. Program 
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the appearance of some submodel)  which  he  Is  asking the 

program to fix up. 

As we saw In section U.3, the program 

Immediately sets up a hypothetical local environment In 

which the defflclency has been rectified. Then It tries to 

deduce an earller environment which would cause the new 

desired simulation state. It does this deduction via the 

"logic of INCREASE" mentlonec In section 2. The "logic", 

briefly stated, runs as follows: 

(1) Constant quantities cannot be INCREASE'd 

(2) In order to INCREASE a quantity that Is ,3 resource 

variable which Is »OUTPUT (»REMOVE'd) by an *ArTIVITY 

or »EVENT, set up a new *G0AL to INCREASE (DECREASE) 

the number of occurences of that «ACTIVITY or »EVENT 

(3) !n order to INCREASE a quantity that Is »RETURN'ed 

by a »FUNCTION, set up a new INCREASE-FUNCTION »GOAL (1) 

U) In order to INCREASE the number of occurences of an 

»ACTIVITY,  set  up  (If necessary (2) ) a new »GOAL to 

(1) INCREASE-FUNCTION's major claim to fame is that It sets 
up »GROUP »GOAL'S. I will therefore discuss It when I talk 
about »GROUP In U.U.2.3 rather than here. For now It's okay 
to view INCREASE-fUNCTION as analogous to INCREASE applied 
to »ACT I V ITY s. 

 ————    ■ "—■— -- - ■•'-' 
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INCREASE the resources needed by that *ACTIVITY 

(5) In order to INCREASE the number of occurences of an 

»EVENT, set up a new *G0AL to INCREASE the frequency 

with which its »CONDITIONS are valid (which might 

Include a *GOAL to INCREASE the number of occurences of 

the ♦ACTIVITY'S which the *EVENT affects) 

Clearly, the Intent of this list Is to cover anything  which 

the  user  or  another  part of the program (1) might ask to 

INCREASE.  However, the rules  n the list are by no means of 

uniform character;  they differ greatly  In  their  logical 

bases. 

The first rule can be viewed as a 

"fact", or. If you will, a property of the concept 

"Increase." That Is, the first rule depends onlv on the 

concept of "Increase"—not on MSL, models, etc. The second 

rule expresses a definite property of MSL rooted In the 

semantics of ♦OUTPUT. It therefore depends not only on 

"Increase", but also on the definition of MSL. The third 

rule, which will be discussed later, depends on "Increase", 

the  definition  of MSL, and the rules of mathematics (sin ce 

(2) Some necessary  resources may already  be  present  Fn 
sufficient quantity. 

(1) Since INCREASE Is defined recursively, the  "other  part 
of the program" might be INCREASE Itself. 

MMM    ■  _  ,..  JJ^ädktM^- „.■»., ..,.-.,■.■.■:-... ^L*    .,,—^^.-i^..    ■ 
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mathematical functions are being Increased). Again, It Is 

valid for any MSL model. The fourth and fifth rules are 

different In a very Important way. They depend not only on 

the definition of MSL and other "plvens", but also on the 

particular  model   defined   by   the  user. 

The reason for this is that the 

occurence of ♦ACTIVITY'S (and thus ♦EVENT's via the 

♦ACTIVITIES construct (see k.D) can be directly determined 

by user Intentions. These Intentions are expressed by the 

♦SCHEDULE modifier (see U.l). ^SCHEDULE is used whenever 

the modeller wishes to override the "always schedule when 

possible" default, of the simulator. It therefore determines 

the pattern of ♦ACTIVITY and *EVENT activation throughout 

the simulation. *SCHEDULE is thus the primary expression of 

the   user's  policy  for   directing  the  dynamics  of   his   model. 

The fact that the "logic of INCREASE" 

must take Into account user Intention provides the key link 

between the "how?" and "why not?" questions. In the case 

of the first three rules of INCREASE, the "how?" question Is 

perfectly well-formed. The program need only look at what 

Is to be IflCREASE'd without worrying about reasons whv It 

shouldn't be done. There are no reasons, because the rules 

are     valid     for  any case   the   program can  encounter. Thus, 

the  program can  always   go  ahead and  try     the     INCREASE.        It 

. . ——.^.■^■.-.,-..„  
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can either fall (1) (as In the case of INCREASIng a 

constant for example) or It can set up the next subgoal 

(usually another INCREASE *G0AL)--all without worrying about 

"should" and "shouldn't". 

On the other hand, rules (k) and (5) 

must worry about "should" and "shouldn't" before setting up 

the next subgoal . Perhaps the user does not Intend for the 

INCREASE to take place. Thus, INCREASE must ask the "why 

not?" question before It proceeds. 

k.k.2 Jh&  voice fif REASON 

We saw In the previous section that the 

use of INCREASE to ask the "how?" question leads directly 

to the need for the "why not?" question. As usual, the 

program frames this question as a *G0AL. That Is, given the 

♦GOAL of INCREASIng an »ACTIVITY "A" by "m" occurences In 

TIME-SLICE "n": 

(*G0AL (INCREASE A m n)) 

(1) A fallu.e of this kind  Is automatically for a "GOOD 
REAS0N"--bee sections 2 and k.U.2.1. 

■ ■ - 
■ ■ ■ -_ .  ..     .     ...   



Page 91 

the program Immediately forms the *G0AL 

(*GOAL (SCHLDULE m A n)) 

to ascertain whether or not INCREASE should proceed. 

SCHEDULE'S job Is to examine 

SIMULATION-HISTORY and the user's model to determine why the 

change suggested by INCREASE was not originally part of 

SIMULATION-HISTORY. After all, since It presumably leads to 

the desired state, why didn't the user cause the state 

suggested by INCREASE In the first place? 

There are two kinds of reasons for the 

user's not causing the suggested state to occur Initially. 

A GOOD REASON Is that he deliberately Intends (for reasons 

best known to himself) the mode! not to allow that state. 

A BAD REASON Is that the Interaction of the submodels has 

caused a constraint which disallows the state. A BAD REASON 

Is not a bug. It simply Implies that a constraint Is due to 

submodel interaction and not user Intention. However, given 

the bug philosophy of section 3, the program treats a BAD 

REASON as "susplclous"--a cause for further Investigation. 

In this section we examine the way the 

program distinguishes GOOD REASON'S from ^D REASON'S (and 

the way It classifies BAD REASOM's). The next subsection 

discusses the program's model  of user  intent--1 .e.,  Its 

-■ _ 



Pf 

1 
Page 92 

method for discerning GOOD REASON'S. After this, we 

classify BAD REASON'S along the lines of the three 

"Interaction bugs" presented In section 3. 

U. It. 2.1 GOOD REASON'S 

At each stage of the debugging process, 

the program Is trying to change an envlronment...by using a 

resource. Inserting a new submodel/etc. In order to do 

this, the program must face the question of whether or not 

the change should (In terms of user Intentions) be made. 

Of course. It Is unreasonable to expect the user to have to 

tell the program at each step what should and should not be 

changed. In fact, given the philosophy of section 3, It Is 

very unlikely that the user could provide this Information 

If he v/anted to. Thus, the program needs some sort of 

theory of which of the constraints found In 

SIMULATION-HISTORY are user-Intended and which are there 

because of a possible bug In the model. 

Going back to sections 1.3.1 and 3, we 

recall the previous assumptions about user Intentions: the 

user has a good understanding of each submodel, but only a 

very weak understanding of how submodels Interact to achieve 

an overall goal.  Thus, the program can  assume,  at  least 

■'-'■■■■    ■     - ■   ■ - -■■    -—---..^. ..■  
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temporarily, that all information In the simulation history 

which Is derived directly from user statements about an 

Individual submodel Is user-Intended. All other Information 

Is necessarily the result of submodel Interaction and Is 

therefore suspect. The programming task is to interpret 

this simple theory (1) of user intention In terms of the 

deductive  mechanisms  and  SIMULATION-HISTORY. 

Everything In an MSL specification 

pertains only to a specific submodel; this. In fact, was a 

design criterion (see k.l). Thus, everything so far Is 

user-intended, by our principle of locality. But this Is 

only stat Ic information. Once the model i:> simulated, some 

of this static local Information gives rise to interaction 

between submodels. The question then becomes one of 

determlng how locality is preserved in the dynamic behavior 

of       the       model. That is, what's local about 

SIMULATION-HISTORY? 

According to U.3, the answer seems to be 

that     the     TIME-SLICE     Is     used     by     the  program as  a   "local 

(1) This theory Is of course quite liberal in its suggestion 
of "suspect11 constraints. At this stage, this seems to be 
the best strategy. The deductive mechanisms are capable of 
eliminating non-bugs rather easily so that things don't blow 
up (see section 2). However, If really large models were 
used, a better theory would be necessary to avoid smothering 
the   program with  possible   leads   (see   section   I4.5). 

    1.1,1,1, —r.  ' — 
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environment"...but why? The TIME-SLICE preserves locality 

because direct user policy Is at the TIMF-SLICE level. 

SchedulIng decisions set certain »ACTIVITY'S to occur In 

certain TIME-SLICE's (see description of *SCHEDULE In k.l). 

»PREREQUISITES are checked at the TIME-SLICE level, »OUTPUT 

occurs at the TIME-SLICE level, »FUNCTION'S are called, 

»EVENT'S trlggered^tc—all at the TIME-SLICE level. All 

of the direct user decisions, as specified by the static 

information in the MSL, affect the simulation at the 

TIME-SLICE level. Therefore, the program takes a constraint 

to be local (and thus user-Intended) if It depends only on 

what happens In a single TIME-SLICE. 

Now I mentioned in 1.3.1 that the models 

used In this thesis are especially interactive. 

Furthermore, as I said above, the criteria for suggesting 

unintended constraints can afford to be liberal--we would 

rather suggest wrong bugs than miss a possible bug. Thus, 

we would expect there to be few local "user-Intended" 

constraints and many non-local "suspect" constraints. This 

Is Indeed the case. The resources present in any TIME-SLICE 

are dependent on the action of the model over many 

TIME-SLICE's and are thus non-local. Similarly, the timing 

of »ACTIVITY'S which do not contain »SCHEDULE specifications 

becomes  resource-dependent  and  thus non-local.    »EVENT 

fe^^^^^^^MMMMM 
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occurences are specified by probabilistic functions of 

resources and are thus non-local. Finally, higher-order 

constraints like coincident presence of several resources 

span several TIME-SLICE*! (see i*.3) and are, almost by 

definition, non-local. These non-local constraints give 

rise to the BAD-REASON«s discussed In the next two 

subsections.        For  now,   let's mention   the   few GOOD     REASON'S 

that  exist. 

Most  GOOD  REASON'S concern constraints 

that arise  from ♦SCHEDULE constructs.   If  the  change 

requested  by   INCREASE  would  violate  the  »ACTIVITY'S 

•SCHEDULE for that TIME-SLICE, SCHEDULE denies  the  request 

for  GOOD-REASON  (1) . Thus, If, as In section 2, there are 

three ADVERTISING «ACTIVITY'S already  In a  TIME-SLICE  and 

ADVERTISING contains the modifier 

(♦SCHEDULE 3) 

SCHEDULE will deny a.^y request to up the amount of 

ADVLRTISING In that TIME-SLICE. Similarly, SCHEDULE views 

the   other   avatars   of  «SCHEDULE   (see  k.l)       as 

GOOD-REASON-generators. 

The other kinds  of  GOOD  REASON'S  are 

(1) There Is one exception to this which will  be discussed 

In the next subsect!on. 

—  



■ 

Page 96 

those that are based on "fact" or are "true by definition" 

(see the first three tules of INCREASE In it.»*.l). Thus, 

SCHEDULE will deny attempts to schedule In negative time. 

Increase constants, etc. for GOOD REASON. Actually, these 

REASON'S can be viewed as being based on the "common sense 

knowledge" the user has In addition to his knowledge about 

submodels. That Is, the user directly Intends nls model to 

be "sensible" as well as to be In accordance with known 

subrodel constraints. 

Thus, GOOD REASON'S apply to constraints 

which depend only on single TIME-SLICE Information, I.e., 

which reflect the locality which Is characteristic of user 

Intention. We now go on to Investigate the way In which the 

program deals with non-local constraints. 

U.U.2. 2 Basic BAD REASON'S 

If the program cannot find a GOOD REASON 

for a constraint. It must attribute Its existence to a BAD 

REASON. From the "Interaction bug" philosophy of section 3 

we see that the user's understanding of his model falters In 

the three critical areas mentioned at the beginning of tnls 

sect ion: 
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(1) the effects of resource competftion among submodels 

(2) timing effects of submodels 

(3) the effects of higher-order constraints 

If a constraint Is there for no GOOD REASON, the program 

considers the possibility that the constraint arose 

unintentionally from one of these three misunderstandings, 

it will therefore try to come up with a BAD REASON for the 

constraint's existence so that It can Inform the debugger of 

the possible anomaly (see  section k.k.5). This  section 

will consider the BAD REASON'S related to the first two 

kinds of Interaction. These BAD REASON'S form the basis for 

BAD REASON'S arising from hIpher-order Interdependencies--as 

discussed in t». a . 2 . 3 . Mow, to continue with our favorite 

process, the SCHEDULE *G0AL was just seeing why the desired 

•ACTIVITY wasn't scheduled In that TIME-SLICE In the first 

place... 

Since the user didn't specifically ask 

for the ^ACTIVITY not to be scheduled, there can be only two 

reasons why the »ACTIVITY wasn't there: 

(1) some of Its prerequisite resources weren't present 
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(2) It Is dependent on an *EVENT that didn't occur 

Thus, the program first checks out the resource situation In 

the TIME-SLICE. If the resources are not sufficient to 

support the ♦ACTIVITY, there can be two reasons why: 

. 

(1) the resources were available In the TIME-SLICE but 

were used-up by higher-priority «ACTIVITY'S before the 

♦ACTIVITY In question got a chance at them 

(2) the resources just ain't there 

To check out the first possibility, the program looks at the 

status of the higher-priority «ACTIVITY'S In the TIME-SLICE. 

If any of these «ACTIVITY'S Indeed "stole" resources which 

would have allowed scheduling of the desired «ACTIVITY, 

their names are collected and the BAD REASON 

(PRIORITY-RESOURCE-BOUNn (<names of offending «ACTIVITY'sM) 

Is recorded. 

If no higher-priority «ACTIVITY'S stole 

the resources, then the resources must just have been absent 

from the TIME-SLICE In the first place. The ubiquitous 

two possible reasons: 

mmimmmtiammmm 
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(1) The •ACTIVITY'S which »OUTPUT the desired resources 

weren't scheduled until It was too late for the 

resources to be available In the TIME-SLICE 

(2) The »ACTIVITY^ which »OUTPUT the desired resources 

were scheduled too early aid the resources were 

gobbled up by higher-priority »ACTIVITY'S In the 

Intervening TIME-SLICE's 

Of course. In either Instance, the user nay have Intended 

this to be the case (well we know how to check that out...). 

On the other hand, the »OUTPUT »ACTIVITY'S nay have ended up 

In the wrong place because of the user's poor understanding 

of timing effects (1) --a BAD REASON. To determine which Is 

the case, the program proceeds as follows. It first finds 

out what »ACTIVITY'S »OUTPUT the desired resources and 

checks to see If they were scheduled too late to do the 

desired »ACTIVITY any good. Then, It sees whether the 

»OUTPUT »ACTIVITY'S were "late" for GOOD REASON. If not. It 

notes a BAD REASON: 

(1) Note that the "Interaction Information" about timing Is 
Implicit In the resources. That !s, there are no explicit 
timer-alarms to say when something Is too late or too early. 
The only evidence of a timing error In the model will be 
found In the levels of particular resources over time. 
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(RESOURCE-BOUND (TOO LATE (<names 

of offending «ACTIVITY's>))) 

If there are no "late"' »ACTIVITY'S, or If the »ACTIVITY'S 

were late for GOOD REASON, the program looks back up the 

SIMULATION-HISTORY for two things: »ACTIVITY'S which »OUTPUT 

the needed resources scheduled "too early" for no GOOD 

REASON and "Interloping" »ACTIVITY'S of higher priority 

which stole the needed resources. If both of these things 

exist, the program notes: 

(RESOURCE-BOUND (TOO-EARLY (<names of offending »ACTIVITY'S) 

(<names of Interloping »ACTIVITY'S)))) 

Thrs, the PRIORITY-RESOURCE-BOUND and 

RESOURCE-BOUND BAD REASON'S take care of the case In which 

the »ACTIVITY cannot be scheduled because of a lack of 

prerequisite resources (1) . This leaves the o'.ner case In 

which  the  »ACTIVITY could  not be scheduled because It Is 

(1) As discussed previously, the prograi would try to 
alleviate this def.Iclency with an appropriate INCREASE 
»GOAL. The reason for this Is to make sure that the program 
traces through the entire Interaction path: after all, this 
resource defflclency could just be the result of an earlier 
decision which reflects the actual bug. More on this In 
«♦.«♦.3. 
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dependent on an ♦EVENT that didn't occur. 

The proRram can  easily  recognize  this 

second case because It can only arise from the 

(♦SCHEDULE (ON <*EVENT-name> )) 

specification  (see k.l).        If the specified *EVENT did not 

occur in the TIME-SLICE, the desired ^ACTIVITY could not  be 

scheduled.   Now,  if  the  program were acting uke it did 

before. It wou^d try to find out  "why"  the  *EVENT didn't 

take  place   In   the  TIME-SLICE.    However,   this  Is 

inappropriate  for  «EVENT's,  which,  after   all,  model 

occurences which  are beyond the modeller's direct control. 

Of course, this raises the question of why a modeller would 

make an »ACTIVITY dependent on ar *EVENT In the first place. 

Indeed,  the program becomes suspicious: it is possible that 

because of the user's poor understanding of tlm'ng effects, 

the  »EVENT  dependency  (plus  the  time  needed by  the 

•ACTIVITY) will cause the »ACTIVITY to take  effect  at  the 

wrong time-  .tally too late (1) .   The program checks out 

s     the 
he event 

ill   Th!1
m?sf  common  cause  of  this  »EVENT-dependency 

f Ire-f Ightl: g     approach   to  solving  problems:   when  t 
occurs,     start     doing   something  ..bout   It.   (This   Is,   in  fact] 
nnnm?? Sr    "   ^  exa?ip,e  of  section   2:   HIRING   Is  dependent 
on  QUITTING.)       Note   that   this   BAD   REASON   Is      the     exception 
efer^H     ,f     ^HEDULE     saVs     »f.     okay,    11' s  okay" Xium referred  to earl ler. 

__j 
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this possibility by looking up and down SIMULATION-HISTORY 

to see If the ♦ACTIVITY was scheduled "too late" or "too 

early". If either of these Is whe case, the program notes a 

BAD RCASON: 

(*EVENT-TRIGGLRED-SCHIJULE <offendlng »ACTIVITY) 

<"T00 LATE" or "TOO EARLY")) 

If neither of these Is the case, the program simply 

terminates Its line of attack (1) on 

(*EVFNT-TPIGGERED-SCHEDULE) 

ard goes away mumbling to Itself (actually,  this  would be 

the first "GOOD REASON" It looks at after all the BAD 

REASON'S were checked by the debugger). 

Well,  this wraps  up  the  "bas'c BAP 

REASON'S*1  arising  from poor  understanding  of  resource 

conflict and timing effects.   Now we  go on  to  see how 

misunderstanding of higher-order constraints leads to the 

use of these same BAD REASON'S In an expanded context. 

(1) Note that unlike the other BAD REASON'S, this one causes 
the line of attack to termlnate--no further Investigation Is 
possible (see U.U.3). 



Pa^e   103 

«♦.u.2.5 Hlgher-grcier M2. REASON'S 

Up u.itll now (except for part of U. 3), I 

have over-sfmplIf led the Interactive behavior of submodels 

for the purposes of discussion. Specifically, I have 

pretended that a submodel can depend on only one other 

submodo! for Its sources of Input. Thus, my »ACTIVITY'S 

havö had only one unfilled *PREREQUISITE, my *FUNCT!0N's 

only one »ARGUMENT. This Is of course quite unrealistic, 

and not a real restriction of MSL. In this section I remove 

this artificial restriction. 

The Introduction of multiple dependency 

brings up the issue of hipher-order constraints. As we saw 

in U.3, when submodels depend on several other submodels for 

input, the pr:blem-solver must take into account the 

Interrelationship of the input *ACTmr"s. The Input 

♦ACTIVITY'S are in fact operating under a "higher-order 

constraint" (see section 3.2)--they must combine to provide 

resources for a single »ACTIVITY (or »FUMCT.JN) at a certain 

time . This higher-order constraint is modelled by forcing 

the Input »ACTIVITY'S to share a local constraint 

environment (see U.3). That Is, all »ACTIVITY'S sharing a 

higher-order constraint must be scheduled not only in 

accordance with their own needs, but also with the needs of 

■■ ■ - _ 

(mi, ■^M mamm 
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the ♦ACTIVITY or »FUNCTION fchtt Hepends on them. There are 

two ivpes of environment-sharing reflected by two types of 

♦GOAL's to handle the higher-order dependencies. The first 

of these Is *AND/ the expression of the way »ACTIVITY'S 

depend on each other when their higher-order constraint Is 

another »ACTIVITY. The second is ♦GROUP, which mcdels the 

♦ACTIVITY-^FUNCTICN dependency. 

♦AND  dependency arises from ♦ACTIVITY'S 

that look 1 Ike 

(♦ACTIVITY SALES-CALL 
(PREREQUISITES 

(♦AND 
(♦PRESENT (1000 CA^H)) 
(♦PRESENT (1 UNIT)) 

SALESMAN)),, """^ (S0ME 

That Is, SALES-CALL depends on the submodels which ♦OUTPUT 

CASH^UNIT, and SALESMAN. Mi of these ♦OUTPUT'S must be 

present at once (I.e., In the same TIME-SLICE). Thus, any 

♦GOAL which tries to schedule a new SALES-CALL ♦ACTIVITY 

must tnke this Into account. Specifically, If the resources 

are not available, ^H of the ♦OUTPUT ♦ACTIVITY'S Involved 

must be scheduled.  That Is, given thd ♦GOAL 

(♦GOAL (INCREASE SALES-CALL m n)) 

Mi 
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and  assuming none  of  the  necessary   resources  are  on  hand   (1) 

,   the   program must  generate   the   subgoal 

(♦GOAL 
(*AND 

)) 

(♦GOAL (INCREASE CASH j n)) 
(♦GOAL (INCREASE UNIT k n)) 
(♦GOAL (INCREASE SALESMAN 1 n)) 

Now, just as before, the program must be 

careful not to INCREASE things contrary to the intentions of 

the user. Again, It uses the SCHEDULE ♦GOAL to find out the 

REASON for constraints. However, the SCHEDULE ♦GOAL cannot 

simply checV out each INCREASE ♦GOAL Independently as 

before. The INCREASE ♦GOAL's are now interdependent and 

must be treoted as such. So now, finding GOOD and BAD 

REASON'«; Is a whole new game. 

Mot really. Fortunately, the process 

Isn't very different, especially In the case of ♦AND. First 

of all, examination of the whole GOOD REASON-fIndlng 

philosophy and Implementation will show that It Is 

completely unaffected by higher-order interdependencles. 

This Is almost by definition: GOOD REASON'S pertain to 

Individual submodels and  TIME-SLICE's,  while  higher-order 

(I) In section 2 I kept higher-order constraints out of the 
picture by buffering away dependencies. Thus, In the case 
of SALE^-CALL, all resources except SALESMAN were available 
already (see section 2). 
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Interdependencles     transcend     these     boundaries  of   locality. 

Thus,   SCHEDULE'S   GOOD     REASONfnR     processes     are     still      the 

same.        Certainly,     however,   the   BAD   REASONIng   Is   different. 

But   most  of  the  differences   have  been   taken  care  of     alr^dv 

by     the     environment-sharing   discussed   In   ^.3.     That   Is,   the 

effects  of  higher-order  constraints    on     resource     conflicts 

and     time  dependencies  are   already   reflected   In   the  way  *AND 

*G0AL's    are     set       up       and       processed-the       higher-order 

Interdependency        Is     already     modelled.       For     example.      If 

satisfying  one  component   *nOAL   steals   resources   from  another 

or   disturbs   the   tlmHg  of  another,     the     shared    environment 

will   make   this   Interaction  explicit:   the   resources  needed  by 

each     ♦GOAL     are     recorded   separately  so  that   the  effects  of 

everything  done   in   the   »AND   environment   can  be   traced   to   the 

proper  source. 

All   this   Is   saying  that  all   SCHEDULE  has 

to  do  about   *AND's   Is   to   realize   that     It     Is     In     a     shared 

environment     and    attribute     BAD     REASON'S   to  the  effects  of 

sharing.     Thus,   the   searches   for  higher-priority  »ACTIVITY'S 

and   timing  problems  which  were   previously  carried     out     only 

In   a   single   TIME-SLICE  ore   now carried  out   In   the  whole   »AND 

environment.     The   "new"   BAD   REASON'S   they  generate   look   like 

(PRIORITY-RESOURCE-BOUND   (<names  of  offendlne 
*ACTIVITY's>)   *AND-M0DE) g 

(RESOURCE-BOUND   (TOO-EARLY   (<names 
of  offending   »ACTIVITY's>) 

MBMH 
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♦AND-MODE (<names of fnterloplng ♦ACTIVITY'S 
!n the *AND environment)) (<names of other 

Interloping *ACTIVITY's))) 

etc. 

The theme here I that most of the work 

for finding higher-order BAD-REASON's In the »AND case was 

done by setting up the *'AND environment In the first place. 

That Is, the Interdependency Is already explicitly modelled 

by the way *AND «GOAL's work, and need only be checked 

through by SCHEDULE to find the appropriate BAD REASON'S. 

This theme Is elaborated for the *GR0UP case. 

In U.U.l I postponed the Issue of 

INCREASIng ♦FUNCTION'S by attributing this task to a 

separate INCREASE-FUNCTION *G0AL-type. The job of 

INCREASE-FUNCTION Is to flgu.e out a way to Increase the 

value »RETURN'ed by a »FUNCTION hy changing the values of 

Its «ARGUMENTS (thus. It Is completely analogous to 

INCREASE). Obviously, this problem Is extremely difficult 

for a large class of functions. Fortunately, the functions 

needed In business games, and. Indeed, In most of business 

processing, are of a very simple nature (1) .  MSL currently 

(1) The mathematics of management science--!.e., mathematics 
meant to model systems and declslons--can be quite 
sophisticated, but this Is not business processing. Indeed, 
even In a business game, the probability-handling can get 
tricky.  But all of this Is built  Into MSL--the  user can 

— 
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allows the representation of only two kinds of functional 

dependencies: tables and linear functions of a few 

variables. The mathematical techniques for Increasing these 

♦FUNCTION'S are simple and arc not of Interest here. The 

Interesting part of »FUNCTION'S for this discussion Is they 

are responsible for the second kind- of higher-order 

Interdependency. 

l.'e  just  saw how  the relation between 

♦PREREQUISITES and »OdTPUT's  causes  *AND  Interdependency. 

Similarly«  the  relation  between »ARGUMENTS and »RETURN'ed 

value causes »GROUP Interdepency.   In tne  »AND  case,  the 

Interdependency was that iü »PREREQUISITES must be present 

In the proper quantities In  a  single  TIME-SLICE  for  the 

»ACTIVITY  to  be  Initiated.   »GROUP  Interdependency  Is 

weaker.  We know only that some combination Q±     change«,  to 

the  components  will  bring about the desired change to the 

higher-order constraint.   That  Is,   each   subgoal   can 

contribute an  unspecified  amount  to  the  success of the 

overall »GOAL.  Perhaps the Increase  of  only  one  of  the 

»ARGUMENT  resources will suffice to increase the »RETURN'ed 

value.  Or, all may be necessary-making the »GROUP an  »AND 

at the extreme. 

Now  the program must model this kind of 

only  define  simple  functions which  use  the probability 
machinery. 
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Interdependency when It tries to INCREASE »FUNCTION'S. 

Furthermore, In trying to solve the INCREASE-FUNCTION 

problem. It must go about the task pretty much the same way 

organizations do In order to run Into the same kind of 

Interactive behavior. That Is, th3 Interaction involved In 

a kind of breadth-first approach to the problem (Increase 

each »ARGUMENT resource a little In turn until the 

♦RETURN'ed value has been IMCREASE'd the desired amount) 

causes very different subgoal Interaction than, say, a 

depth-first approach (Increase each »ARGUMENT as much as 

possible separately to see how much It helpi. to INCREASE the 

•FUNCTION). The differences are In which subgoals are 

allowed to be achieved at the expense of others (1) , the 

range of subgoals tried, and the extent to which each 

subgoal Is exercised (2) . Clearly, different 

Interdependencles are tapped by different subgoal attack 

methods. 

So the program must try to overcome  the 

(1) Unlike »AND, this Is allowed because not all »GROUP'ed 
subgoals must be achieved. The only requirement Is that all 
of the subgoals which eventual 1v succeed must share the same 
local constraint environment (otherwise the construct 
doesn't model higher-order Interdependency). 

(2) Note that this need to model the organization's 
problem-solving method was not present In the »AND case. 
Since all subgoals must be achieved as stated, no 
"resource-stealing" Is allowed among them and all of them 
must be fully tried and executed. 

mmm^m^m^mmmmmmj 
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higher-order      constraint     of     Increasing     a 

functionally-determined value the same way organizations do. 

Obviously, this Is a tall order.  First of  all,  functional 

relationships  are  usually  implicit  In organizations, not 

explicit as in MSL--SO It's hard to see  what  organizations 

do  about  them.   Second,  it  Is reasonable to assume that 

different organizations attack different functional problems 

In different ways  at  different  times.    Finally,  It  Is 

possible  that  the actual process is not pre-defined ar all 

In many cases, but is Instead made-cp  and  modified  during 

the  course of each problem's solution.  What I am trying to 

say by all of this Is that I'm not about to solve the  whole 

problem or even a very hip part of it... 

What I have done is to program a single, 

slightly sophisticated method of attacking higher-order 

functional constraints which attempts to model one way in 

which an organization might do it. It should be seen as an 

experiment for demonstrating the approach of the program In 

dealing with this kind of constraint, not a fully developed 

piece of the system. This part of the program. Incorporated 

in INCREASE-FUNCTION, works as follows: given a *G0AL of the 

form 

(*G0AL 
(♦GROUP 

(♦GOAL   (INCREASE   argumentl   timel)) 
(♦GOAL   (INCREASE   argument2   tlme2)) 
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)) 

the program takes the first •GOAL 

(♦GOAL (INCRFASE argumentl tfmel)) 

and tries to INCREASE argumentl the minimum possible  amount 

as  a "feaslblllry study".  It carries the *GOAL a]]   the way 

to completion. If It can.   If  the  *G0AL  Is  unsuccessful 

(for  GOOD  REASON), It Is wlthdrwan from the -GROUP and the 

program does a "feasibility study" on the next *G0AL In  th« 

♦GROUP.   If no "feasibility study" Is successful, the whole 

♦GROUP naturally falls.  Now, If any of  the  "studies"  are 

successful, the program will keep attacking the studied lint 

until   It   falls.   When  this  happens.  I.e.,  when  the 

particular  ♦ARGUMENT  has  been  INCREASE'd  as  much  as 

possible,  the  program considers Itself to have a "partial 

success".  That Is, the effect o* the  INCREASE'd  ♦ARGUMENT 

Is  now calculated Into the overall «GROUP «GOAL, so that a 

new ♦GROUP »GOAL Is formed such that 

(1) The fully INCREASE'd «GOAL  Is  no  longer  In  the 

♦GROUP 

(2)   The overall  ♦GOAL  Is  reduced  by  the  amount 

contributed by the successfully INCREASE'd ♦GOAL 
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,n this B^ -GRO'JP  environment,  the  other  •GOAL».  If 

similarly processed until success (or failure) occurs. 

All of this hopefully goes toward 

modelling the way an organization attacks this kind of 

problem: by checking out and eilminadng possibilities one 

by one, and pushing winning lines as far as possible to 

achieve the overall *G0AL. As Intimated In U.3, the process 

Is modelled (like *AMD) by the proper sharing of 

environments. Obviously, the environment-hackery for 

♦GROUP'S is a bit morn complicated than for *AND (for 

example. It must Incorporate the notion of "partial success" 

and the fact that all the eventually successful »GOAL's and 

only the eventually successful »GOAL's share the same local 

constraint environment). The question for us here Is how 

this affects the GOOD and BAD REASONlng process. 

Again, the answer is "not all that 

much". As with the *AND case, the only difference Is that 

the BAD REASON'S differentiate between constraints caused by 

higher-order interaction and those caused by other kinds of 

interaction. This ?s again just a matter of tracing through 

the explicit relationships set up In the ♦GOAL's environment 

structure. As far as actual BAD REASON'S for constraints 

go, »GROUP only adds two (minor) new wrinkles. First of 

all. It will make a special notation If the constraint comes 
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up during a feasibility trial. Second, It carefully notes 

which *Gn0UP »GOAL'S have already succeeded when the 

constraint comes up. These are just convenience factors 

which the bup.-flnder uses when surpestin^ »GROUP bugs to the 

user; it wants to make clear exactly what the propram was 

doing when it ran into the constraint. This is Important, 

because, as mentioned above, different Interaction occurs 

depending on exactly what the program does. 

This brings up a final important point. 

•GROUP BAD REASON'S are perhaps the weakest In the REASON 

repertoire because they depend directly on the actual 

exploration methods used. That is, the program might 

suggest a CAD REASON which the user may never really 

encounter because of the way his organization handles 

functional dependencies. Thus, the debugger saves 

*GROUP-type hugs for last. Nonethelt .s, I think that It Is 

very Important to Include this kind of REASONIng In the 

debugger: ♦GROUP-style dependencies are pervasive In 

organizations. Furthermore, they point the way toward 

modelling more sophisticated kinds of submodel-submodel 

Interactions . The weakness of the »GROUP method In this 

program is Its incompleteness, not I'. s basic concept. 

This section has catalogued all  of  the 

BAD  REASON'S  generated by the program.  Now we finally get 

- - 
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around to finishing the bug story bv  showing  how  the  BAD 

REASON'S are used to suggest the actual model bugs. 

k.k.l  Jhs.  post-mortem recriminations 

So far, the debugger ha* been left with 

a bunch of GOOD and BAD REASON'S for constraints. It Is now 

time to turn these Into bug suggestions. So, let's see what 

the REASON'S mean to the debugger. If the problem-solver Is 

faced with a BAD REASON for a constraint. It knows that the 

constra'nt Is based on submodel Interaction. Its job Is to 

explore that Interaction. Therefore, when SCHEDULE returns 

a BAD REASON, the problem-solver considers It a cause for 

further Investigation. In this way. It carries the 

perturbation as far as It can--traclng the Interaction 

patterns to their roots. 

GOOD REASON'S are the "roots" that stop 

this search through the interaction path. They Imply that 

the constraint blocking the path Is not due to Interaction, 

but rather to direct user Intent. fhe program should not 

disturb user Intent, since Its only purpose In changing the 

environment Is to debug the existing model. It now has a 

GOOD REASON to stop changing the environment, so  It  stops. 
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Its current line of attack Is said to "fall" (In Its attempt 

to brlnr, about the desired change). Thus, the 

problem-solver's activities leave a line of »GOAL's attached 

to BAD REASON'S ending In a ♦dOAL attached to a GOOD RtASON 

(1) . Now what does all o^ this have to do with debuRKInp? 

Simply this: the program has now tried to overcome every 

Interaction-based constraint In the way of producing the 

user's desired state. It has reached a user-desired 

constraint which Is the root cause of a'. 1 of the 

Interaction-based constraints. Therefore, It has reached 

the end of the line and cannot produce lh£. user's desl red 

state. There can be three reasons for this state of 

affa Irs: 

(1) The user's desired state Is off-base: he has set 
the model an Impossible task 

(2) One of the user's original Intentions Is wrong; 
I.e., one of the root constraints Is the bug 

(3) One or more of the Interaction-based constra'nts 
between the root constraints and the desired state are 
Incorrect: the model has an Interaction bug 

It Is obvious from what has been said before that the 

program thinks that possibility (3) is the most likely. It 

therefore suggests that one or more of the interactive 

constraints  (noted  by BAD REASON's) are caused by the bug. 

(1) Except for the *EVENT-TRIGGERED-SCHEDULE case  discussed 
In U.l».2.3. 
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That fs, given that the Interaction constraints are v/rongly 

causing the discrepancy, the debugger's job Is to find the 

part of the model which slves rise to the faulty 

constraints. This Is then suggested as the "bug" In the 

user's model. If the user doesn't agree with any of the 

program's suggestions based on possibility (3), the program 

falls back on (2), and finally (1). Anyway, let's pick up 

the process again at the posslbllty (3) suggestion phase. 

The program now has the location of the 

bug bracketed between the beginning and end of a "line of 

attack". Furthermore, the submodels which could have caused 

the bug have been narrowed down to a relatively small 1 

"Interaction group" (the union of all submodels mentioned In 

the  bracket)  (1)  .    The  program must now pick out the 

(1) The size of the "bracket" and "Interaction group" of 
course depends on the model. However, In the experience I 
have had, the relevant groups have been small: a few BAD 
REASON'S and thus slightly more possible submodels. In the 
case of higher-order stuff, the proup gets somewhat larger. 
There Is no reason to expect brackets or Interaction groups 
to get much larger for larger models: the key factor In 
determining their size Is the amount of control the user 
exercises over his model (In MSL, the extent to which things 
are determined by »SCHEDULE'S). Control means GOOD REASON'S 
and thus short paths between Initial manifestations of a 
discrepancy and GOOD REASON'S to close the bracket. Control 
also means smaller groups of submodels which can affect the 
timing and resource-allocation of other submodels. Since 
managers (and modellers) exert considerable control over 
their systems, the amunt of uncontrolled Interaction 
possible In any realistic model Is probably quite 
reasonable-cIzed. This In turn means that brackets and 
Interaction groups should also stay reasonable-sized. 
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submodels !n the "rroup" which caused the BAD constraints In 

the "bracket" 

Sometimes this is quite easy: all of the 

BAD REASON'S are traceable to a single suhmouel Interaction. 

Examples of this are the »EVENT which triggers an »ACTIVITY 

at the wrong tine, the »ACTIVITY which constantly steals 

resources from other necessary »ACTIVITY'S, and the 

»ACTIVITY which Is always too late (too early) to allow 

another »ACTIVITY to be Initiated on time. The program 

looks for these single-cause Interactions by scanning the 

BAD REASON'S In the bracket, looking fo. "give-away" BAD 

REASON'S like »EVENT-DEPENDENT-SCHEDULE or consistencies In 

the "offending »ACTIVITY'S1' and "Interloping »ACTIVITY'S" 

listings. If, In the process of examining the bracket, the 

debugger finds a single such cause for the BAD REASON'S of 

the bracket. It Immediately labels the faulty Interaction 

(I.e., the submodels Involved In the interaction) as the bug 

for that bracket, and files It away. Often, however. In 

looking at the BAD REASON'S of a bracket, the program finds 

that a particular BAD REASON could have been caused by any 

of several Interactions. For example, »ACTIVITY A couldn't 

be scheduled because B stole Its resources, or because C 

caused D to be late so that D couldn't provide the necessary 

resources for A.   The program handles this by noting each 

 ^. 
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cause sep- rately as a bug. 

Sometimes thl^ straJghtforward process 

breaks down: the program Is unable to pick out the causg for 

the BAD constraints of a bracket (this happens mostly In 

♦ AMD's and (especially) *GR0UP,s). Currently, th.' program 

simply presents the troublesome bracket to the user telling 

him that "there's something wrong In there". I consider 

this an Incomplete part cf the program (see k.5). 

When the program has found the bug (or 

the few bugs) for each bracket. It presents them to the user 

In order of "likelihood". The debugger's model of the 

likelihood that a suggested bug Is actually a bug In the 

model Is 

(1) The more snecIfIc the suggested bug, the more 

likely It Is that It Is genuine; thus, bugs like 

♦ EVENT-DEPEK'DENT-SCHEDULE which correspond to a single 

BAD Interaction are suggested first. 

(2) The more definite a suggested bug, the more likely 

It Is; I.e., brackets which contain a single possible 

bug are suggested before those with multiple bugs, 

which are In turn before those which are just brackets 

with the "something's wrong" tag. 
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(3) The mcr« inceractfons encompassed by a single bug, 

the more likely It Is; this Is just a recursive 

application of Murphy's law...the more Interaction 

decisions a user has to make, the more he'll blow-thus 

♦AND bugs (1) and long timing chain bugs (A was late 

for B was late for C was...) come early. 

(I») Timing bugs are more likely than resource-conflict 

bugs; PRIORITY determinations are much closer to local 

specifications/ and are thus more likely to be 

user-intended than the multJ-TIME-SLICE machinations of 

a timing bug. 

(5) ♦GROUP bugs are saved for last. 

(6) After all of the bugs due to Interactlor are gone, 

the program works on the second possibility stated 

above—I.e., It starts suggesting that the GOOD 

constraints are faulty (I.e., wrong ♦SCHEDULE 

specification, etc.); It starts with the 

♦EVENT-DEPENDENT-^SCHEDULE GOOD REASON If It's 

v^round--11' s suspicious. 

(1) ♦GROUP bugs would be here too, except, as I mentioned In 
i».U.2.3, for the fact the mechanism for handling them Is 
rather dubious. 

■   
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(7) The program suKgestn mfsslnß submodels (see k.S). 

Thus, the proRram goes through Jts suggestion repertoire bug 

by bug, providing the user with an orderly statement of what 

the program thinks might be wrong with the model (see 

section 2 for the format of the suggestions). The user can 

always ask to see the Interaction path leading to a bug, the 

bracket of a bug, and any other bugs which pertain to a 

particular bracket. 

If the user does not agree with ary of 

the bugs suggested, the program will suggest possibility 

(1): that his original *G0AL was wrong. If the user Is 

still unsatisfied after all this work, the program Informs 

him as to the location of his head and logs him out. 

U.5 Don't confuse rn£ with the fj ^li 

Most of the program's knowledge about 

models Is contained In Its conceptions of MSL (Including, 

for example. Its Ideas of how to INCREASE MSL quantities) 

and Its notions of user Intention—as discussed In k.k. 

However, as I mentioned In section 2, It Is useful from a 

debugging point of "lew to Include actual "world" knowledge 

of business games. Clearly, this knowledge can be used to 

suggest bugs which transcend the MSL specification. 

MM« 
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This Is, In fact, the only use the 

current program has for WOBG knowledge. As shown In section 

1, the program has a facility for suggesting "missing" parts 

of an MSL specification. This comes from a (very simple) 

model of what an MSL model of a huslness game (1) coul d 

contain. The program simply checks at various points to 

see whether the addition of an *ACTIVITY could solve some 

problem (usually alleviate some defflclency) In the user's 

model Thus, when there Is a lack of CASH In the sample run 

In section 1, the program notes that the addition of a 

FACTORING *ACTIVITY (see description In Appendix A and 

specification In Appendix B) could solve the problem. 

While this sort of thing Is certainly 

useful. It Is only a "zeroeth order" attempt at using world 

knowledge In debugging. A more Important use of WOBG 

knowledge would be to aid In finding bugs within the MSL 

specification (I.e., the same kind of bugs the program now 

finds). As I mentioned In «t.U, a major determine»" of the 

efficacy of the debugging program Is the number and slie of 

the "brackets" which enclose possible bugs. In the current 

program, brackets are determined by the amount of 

uncontrolled Interactlon--I.e., a purely MSL-level 

criterion.   In  a more  thorough-going  approach,   WOBG 

(1^ In fact. It Is based entirely on the game In Appendix A, 

■MMMMMMMMMHa 
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knowledge could be used to determine which Interactions are 

reaily natural and which are possible bugs (1) --thus 

limiting or even eliminating brackets. Also, WOBG knowledge 

could be used to suggest suspiciously specified ♦ACTIVITY'S, 

etc. 

The main reason that I have not 

exploited WOBG knowledge in these more sophisticated ways Is 

that It has not been necessary for the models I have 

Investigated so far. Furthermore, It Is Interesting to see 

how far a "domaIn-Independent" (2) debugger can go toward 

finding bugs in MSL models. Thus, WOBG knowledge does not 

enter Into the main bug-finding process at all. Its sole 

use Is In suggesting the addition of »ACTIVITY'S to the 

current model (3) . 

(1) This sort of thing Is actually found to some degree In 
the programs of Sussman |18| and Goldstein |5|. 

HACKERe|18|SrTian,S diSCUSS'0n of the  doma In-Independence  of 

(5) It operates off a WOBG database which will not be 
described here. It works a lot like MAPL |10|, and was In 
fact designed to be compatible with the larger MAPL database 
of PrctosysLem I (the WOB |9|). 
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5 Concluston«; 

I would like to use this concluding 

section to fit my model-debugging system Into the "bfg 

picture", viewing It First as a debugging tool, and second 

as part of an automatic programming system. 

The approach of my debugging system 

should be seen as one method of the several which can be 

used by the human or machine problem-solver. The 

slmulate-and-lnvestlgate technique shown here Is useful for 

debugging poorly understood but easily modelled systems. It 

requires the modeller's knowledge and lack of knowledge to 

be of a certain charactfer, as outlined earlier. It Is also 

most useful for handling highly Interactive systems. If the 

problem domain Is very well understood, or If actions In It 

are basically Independent, other techniques are simpler and 

much better. 

Furhtermore, It should be stressed that 

the debugging methods of the program are quite naive In the 

context of a real (I.e., non-game) Interactive system. It 

Is almost certain that all of the techniques described here 

would have to be shored up with procedures based on 

knowledge of the problem domain (see  U.5).   Remember  that 
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the basic "smarts" of my system Is In the exploration of the 

simulation history. In real life, this exploration phase Is 

usually preceded by some knowldgable guess work on the part 

of the debugger: almost all expert human debuggers 

(programmers, consultants^tc.) star: their exploration for 

a bug with a good preconceived notion of the nature of the 

bug. This "notion" comes from the utilization of long 

experience about what kind of bugs are attached to what kind 

of problems; most debuggers know that only one or two things 

could possibly cause a bug at any given time In their 

exploration. No one yet know., how to encode this key 

experiential knowledge Into a computer program. Certainly, 

no attempt has been made in this thesis. 

Thus, the program presented here, when 

viewed only as a general debugging technique, should be seen 

as part of a larger system: it fits in after an Initial 

"guesswork" phase (as one of several possibly applicable 

techniques) and just before a "weeding out" ph^se which 

makes thorough use of knowledge in the problem domain to 

narrow dov/n the choice of possible bugs. 

The model-debugging needs of an 

automatic pro^-ammlng system are somewhat different. Here 

the user is interested in expressing a model of his problem 

to the machine In  such a way that he can be sure that the 

B_*_^a_» .__-_^.,^ ., 
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machine understands It properly. Thus, after a phase of 

model specification aid at defIne-tIme (1) , a 

model-debugging system like the one here can come In and 

demonstrate the APS's Idea of the model to the user's 

satisfaction (and help the user overcome any dlcrepancys). 

The slmulate-and-InvestIgate and domain-Independence 

philosophies of my system are well-adapted to this purpose: 

the system can afford to be an expert In Its own modelling 

language and do a great deal of exploration work In vlndlng 

bugs. Furthermore, the user can tolerate a reasonable 

number of program-generated choices of bugs In his model If 

he can be certain of eventual understanding by the APS. 

Therefore, I think that the techniques ur-ed here might find 

direct application In automatic programming. 

Nonetheless, for a debugger to be truly 

useful, whether In an automatic programming or general 

artificial Intelligence environment. It must Incorporate the 

same kind of experiential debugging knowledge found In the 

human expert. This kind of stuff will surely be the basis 

of the next generation of debuggers which are now on the 

horizon. 

(1) See |9| for Protosystem I's "activity expert modules". 

K 
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Appendix  A 

The following Is excerpted from the 
article "Business Cames--Play One!" by G.R. AndlInger In the 
Harvard Business Review for March-April, 1958 ( 0 The 
President and Fellows of Harvard UnIvers'ty)--It s 
reprinted  by  permission. 

It serves as an example of the kind of 
business games at which the program (and MSL) are directed. 
An MSL model of the game described here appears In Appendix 
B. 
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Business  Games--Play  One! 

Basic  Objectives 

Games are as old as man. Usually/ their 
basic objective Is entertainment. The Business Management 
Game, however, alms not at entertainment, but at learning. 
Other differences between It and a game like Monopoly, for 
example,   are: 

--The   degree  to which   It   approaches   reality. 

--The       degree       to       which        the players' 
experience,     judgment,     and  sklll--as  opposed   to  luck-- 
Influence   the  outcome. 

If any business game Is to serve a pui oose beyond 
that of a fascinating toy , there must be some transfer of 
learning from the game situation to reality. While there 
probably Is some such transfer from playing a generalized 
business game that mirrors "any company" and not a 
particular firm, an executive could derive Infinitely 
greater benefit from a game that permits him to practice 
guiding the destiny of his own company or one In his own 
Industry--whlch unfortunately. Is unavailable at this early 
stoje of business gaming. The success of specific war 
games, which the military has been using for years to 
simulate combat situations for training officers, however, 
holds great promise for similar applications In business In 
due  course. 

The Business Management Game Is a case 
In point. We started It In 1956 with the Idea of applying 
war-gaming techniques to business. In the course of the 
year we tested, modified, and retested the game many times 
to develop a fine balance between realism and playablllty. 
The more closely a game resembles reality, the more 
cumbersome It becomes--unt 11 It Is no longer playable. 
Hence, there Is a need to compromise. Also, we designed 
the game to be relatively stable. No extreme strategy can 
result In sudden success; yet players can gain outstanding 
success If they are good enough--or bankruptcy If they are 
not careful. 

The game Is partly deterministic and 
partly probabilistic. Some results are determined directly 
by the action of the players; others are, to varying 
degrees, subject to chance or probability. The weight of 
the elements of  the  game   Is  such   that   the   longer     the     game. 
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the  smalller  the   Influence  of   luck. 

Rules  of   Play 

In this section 1 shall pjve a hrlef 
general description of each Ratre element and the specific 
values/ rules and probabilities that define each element In 
quantitative terns. Instructions for the umpires are 
Included at each point; but remember that they should not be 
given to the players. 

The Market 

The market Is made up of 2U customers. Each 
customer's potential Is different; In any one time period, a 
few customers are not buying any units, while others may buy 
four or five units (at $10,000 per unit) JL£ a salesman Is 
able to make a sale. 

The market Is dynamic, so the customer 
potentials change. If the market Is growing, they change 
upward; should the market be hit by a recession, however, 
they may drop drastically. The long-term trend of the 
market Is announced to the players; short term fluctuations 
are not. If a company Is Interested In finding out what the 
total market potential Is In any time period, a $2000 
expenditure  for  market  research will buy this Information 
from the umplres. 

The 21» customers dlvMe geographically 
Into four regions on the game board, each region containing 
six accounts. This geographical division allows the company 
to do local advertising (see the section on "Advertising the 
Product") and conduct market research In o- 1y one region at 
a time. Such market research, which tells a company the 
potential of each customer In the region and permits the 
pinpointing of the direct selling effort (see the section on 
"Marketing the Product"), may be obtained by paying the 
umpires $30,000 for  "staff work." 

In  addition  to  the  separation   Into 
geographical  regions, the market breaks down Into one rural 
and two urban markets.  The significance of this distinction 
Is that In an urban market, where a salesman can make more 
calls  per  day,  he has two chances of making a sale during 
each time period, while In the rural market he has only  one 
chance. 

If     at     the     end     of     a     year    a  company 
desires   to  find  out  what  portion  of   the   total   market   It     has 
been       able       to     capture.     It     may     but     a     share-of-market 

■ 
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Information from the umpires for $2000. 
The umpire should: 

(1) Ktep a list of all current account potentials. 

(2) Distribute a total customer potential, which 
comes to $360,000 at the beginning of the game, at random to 
the 21* customers as follows: 

1 account $1*0,000 
3 accounts         30,000 
5 accounts 20,000 
13 accounts        10,000 
2 accounts 0 

(3) Depending on the economic climate determined 
In advance, change these starting potentials as the game 
progresses as follows: 

—For slow growth, chane one account each quarter 
at random. Move ahead on the random number table 
until a number between 01 and 2U appears, then add 
$10,000 to the potential of that account number. 

--For faster market growth, change two or three 
accounts In the same mannner as above for each 
quarter. 

—For a depression, change half or all of the 
accounts to zero for one or more quarters. 

(U) If a company decides to buy market Information 
(total potential, market research, or share of market), 
write the Information on a slip of paper and pass It to the 
company. 

Marketing the Product 

Units are sold by salesmen, who call on 
the 2U accounts In the market. In an urban market a 
salesman may make two calls per quarter; and In a rural 
market, only one. 

In the presence of an umpire, the sales 
manager of a company points to the accounts he wants to call 
on. The umpire will tell him, after examining the random 
number table, whether  a  sale  Is made or not.  How many 
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units are sold to a customer will depend on competitive 
action. The completed decision form, »-eturned to the 
company at the end of the particular period, contains the 
actual sales results by accounts. 

Whenever a salesman has two calls, he 
must make the second call on a any of the three to eight 
accounts adjacent to the flrsc square called on; that Is, he 
may not jump accross territories. If no sale Is made on the 
first call, he may, of course, call on the same account 
again during the same quarter. Furthermore, there Is no 
limit to the number of salesmen who may call on the same 
account In one time period. Between quarters, salesmen may 
be moved to any accounts that the company wishes to cover 
during the next quarter. 

Each time a salesman makes a call, he 
has a certain fixed probability of making a sale. This 
chance of making a vale may be Increased In one of three 
ways or a combination thereof: 

—A company may Intensify Its direct selling 
effort by having more than one salesman cover one 
account as described above. In such a case. If 
the first salesman makes a sale, the second one 
may move to any adjoining account for his calls. 

—A company may support the salesman's effort by 
advertising (see "Advertising the Product"). 

—A company may attempt to Improve Its product by 
spending more money for a research end development 
effort (see "Research and Development"), 

Every salesman costs $10,000 to hire and 
then $1000 per quarter In slary. (Since the product he will 
be selling Is a high-price, complicated unit. It takes one 
year to train a salesman before he can be sent out Into the 
field.) There Is a possibility that a salesman will 
resign. In which case the umpire Informs the company of this 
loss. 

The umpire should have the following 
Instructions for marketing: 

(1) Each period there Is a S% chance of loss for 
each salesman. Move ahead on the random number table as 
many numbers as the company has salesmen; If one or more of 
these numbers Is .05 or less, the company loses one or more 
salesmen. 

(2) In an urban market, allow two calls per 
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quarter; In a rural market, only one call 

(3) A salesman always has a 2S% chance of making a 
sale. For each call, examine the next number on the random 
number table. If the number Is 25 or less, then a sale has 
been made; If It Is 26 or more, no sale Is made. 

Advertising the Product 

Product advertising In a.iy quarter 
Increases the salesmen's chances of amklng a sale. It 
covers only the region or regions (1,11,111, and IV on the 
game board) that the company designates, and 
the current quarter only. Advertising 
page, and a company may buy up to five pages 
In any region In any quarter. 

Here are the umpire's Instructions: 

Is effective In 
costs $3000 per 
of  advertising 

For each sales call within the reglon(s) In which 
the company has advertised, go to the next number In the 
random number table and determine whether or not there Is a 
sale according to the probabilities In the following table. 
If the number Is the same or below the probability 
percentage, a sale Is made. 

Pages Amount ProbabllIty of 
0 0 25| 

$3,000 ?9 
6,000 35 
9,000 U2 
12,000 1*8 
15,000 52 

a sale 

Research  and  Development 

If ü compa 
product. It gains a competlt 
research and development have 
achieve a product Improvement, b 
yield results In a relatlvel 
research effort per quarter cost 
Invest  more  than   that   In  multlpl 

The        umpire 
Immediately    when     Its     research 
produced  results,   and  all   units 
that       quarter    are     considered 
Improvement.     To  find  out   the  ex 

ny    can    develop     a   superior 
Ive       advantage. Usually, 

to be fairly continuous to 
ut a "crash program" may 
y short time. The minimum 
s $10,000, but a company may 
es    of  $10,000. 

notifies       the company 
and  development   program has 

scheduled  for  production     In 
to    be    equipped     with     the 

tent   to which  customers    wll 
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prefer  an  Improved  product,  $5,000 of  market  research 
(obtained from the umpires) Is needed. 

Of course, these ground rules can be 
altered to fit a company's situation more closely--just as 
the ground rules for other aspects of the Business 
Management Game can. A company manufacturing equipment for 
railroads may well want to use different units of research 
expenditure than would a company making dies for plastic 
products. The length of time necessary to get results from 
research also varies greatly from company to company, as 
Joes the cost of research to measure customer reactions to 
new products. These and other rules can--and In many cases 
should--be tailored to the realities of the Industry. 

The  umpires will tell a company as soon 
as a competing team Introdcces an Improved 
market.   The  players  can  then counter 
marketing effort  or  a  crash  research 
program. 

If a company Is Interested In finding 
out the total Industry research and development expenditures 
for the past year, such Information Is available from the 
umpires for $1,000. 

In addition, the umpires should: 

produce In the 
with a stepped-up 
and  development 

(1) Maintain a cumulative account of each 
company's expenses. After each break In continuity (a 
quarter without any R ä D expenditures) and after each 
product Improvement, start the accumulation over again. 

(2) Make appropriate revisions of the probability 
of Improvement. The cumulative dollar amount spent on 
research and development determines the chaices a company 
has for obtaining a product Innovation. Examine the random 
number table; If the next number Is the same as or below the 
probability percentage, an Improvement Is achieved. 

Cumulative amount   Probability of Improvement 

$10,000 
20,000 
30,000 
l»0,000 
50,000 
60,000 
70,000 
80,000 
90,000 
100,000 and over 

0% 
0 
0 
2 
k 
1 
11 
15 
18 
20 

-- 
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product, 
li 
I 

(3) Whenever 
Increase 

a company achieves an   Improved 
roduct. Increase all Its sales probability percentages by 
0. For example. If Company A has an Improved product, this 
s the result: 

ProbabllIty of sale 
Old product 25% 
Improved product +10 

35% 

If Company A spends $6000 on advertising In one 
region ÄQd has an Improved product, this Is the result In 
that region: 

ProbabllIty of sale 
Old product with 
two pages of advertising     35% 
Improved product +10 

U) 
products on 
three. 

(5) 
Improvements 
achieved any, 
by 20. 

As soon as al1 three 
the market,  cancel 

U5% 

companies have  Improved 
the premium of 10 for all 

If one company achieves two product 
before one or both of Its competitors have 
Increase all Its sales probability percentages 

Increasing Production 

must build 
5 units each 
production 
Increment wl 

capacity as 
Construction 
only after 
In progress" 
are not al 
capacity. 

The Initial 
costs $150,000, an 
quarter.  From the 
lines for $30,000 
11 Increase the max 

A company 
soon  as  It de 

time Is nine month 
completion may the 
for the new produc 
lowed to sei 1  or 

plant which each company 
d has a maximum throughput of 
n on a company may add other 
each. But each such $30,000 
Imum throughput by 5 . 
must pay for Increased 
cldes to start construction, 
s (three time periods), and 
first unit be put Into "work 

tlon line.   The companies 
otherwise dispose of excess 

The total lead time In producing units 
s plant Is six months. First, production Is 
this Involves no financial outlay.  Then  In 

In a company' 
scheduled, and 
the next quarter units are put Into "work In progress" and 

- ■   
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must be paid for. In the subsequent quarter these units 
come off the production line , are added to Inventory, and 
may be sold. 

Total production cost contains a fixed 
cost and a variable element. The fixed cost Is Incurred 
each quarter, regardless of how many units are produced. At 
a maximum capacity of five units per quarter, the fixed cost 
Is $6000, and the variable cost per unit Is $3000. As 
capacity Is Increased by additional production lines, fixed 
costs rise and the variable cost per unit decreases. If a 
company, prior to adding a line, wants to know the exact 
costs It will Incur at the next level of capacity. It can 
get that Information from the umpires for $2000, but 
otherwise the umpires will Inform the company what 
production costs are when the new line goes Into production. 

Units are added to Inventory at actual 
cost. When a unit Is sold, however. It Is deducted from 
Inventory at the average cost ( total Inventory Investment 
divided by number of units In Inventory). 

rhe umpires should calculate the 
production costs at various capacity levels as follows: 

Max. capacity Total unit cost  Fixed cost Variable cost 

5 
10 
15 
20 
25 

FInanclal 

$U,200 
3,600 
3,000 
2,1*00 

1,800 

per quarter 
$6,000 
U,U00 
22,500 
28,800 

31,500 

per unit 
$3,000 
2,200 
1,500 
1,000 

600 
Management 

capital  I 
with $U00, 
earnings, 
skill with 
In harmony 

at $10,000 
Increased 
board an a 
space In 
this symbo 
It reache 
pressure I 
hence the 

receivable 

The rru tagement of a company's available 
s of critical  Importance.   Each company starts 
000 capital  and grow only through  reinvested 
Profitability will be In direct relation to the 

which the various parts of the business are  kept 
with each other to achieve sound growth. 

The price per unit of product Is fixed 
When a sale Is made,  accounts  receivable are 

by the total amount of the sale, and on the game 
ccounts receivable symbol Is placed on  the fifth 
the "accounts receivable" column.  Every quarter 

1 Is moved up one space until after four quarters 
s the top space and becomes cash. Competitive 
n the Industry forces the extension of credit; 
one year collection lag. 

If a company Is short of cash, accounts 
may be factored to get cash  Immediately.  The 

mmmm mae 
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cost of doing this Is 20% of the amount factored. 

     ■■-..-. ■ I^^MBIMMi^^^^^M 
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Appendix B 

The following Is an MSL model of parts 

of the game (for ons. "region") described In Appendix A--as 

seen from the point of view of a player wishing to 

Investigate the game and see the effects of various 

strategies. It Is presented here as an Illustration of the 

use of MSL. 

(•ACTIVITY HIRING 
(*PREREQUISTITES (♦PRESENT (1000 CASH))) 
(♦SCHEDULE ON CALL) 
(♦PRIORITY 2) 
(♦OUTPUT (SOME TRAINEE)) 
(♦TAKES 0) 

) 

(♦ACTIVITY TRAINING 
(♦PREREQUISITES 

(AND (♦PRESENT (1000 CASH)) 
(♦PRESENT (SOME TRAINEE)))) 

(♦TAKES 3) 
(♦OUTPUT (SOME SALESMAN)) 

) 

(♦ACTIVITY URBAN-CALL 
(♦PREREQUISITES 

(AND (♦PRESENT (ASSIGNED 
(SOME SALESMAN) 
(SOME URBAN-CUSTOMER)) 

(♦PRESENT (500 CASH)))) 
(♦TAKES .5) 

) 

(♦ACTIVITY RURAL-CALL 
(♦PREREQUISITES 

(AND (♦PRESENT (ASSIGNED 
(SOME SALESMAN) 

Ml 
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(SOME RURAL-CUSTOMER))) 
(♦PRESENT (1000 CASH)))) 

(•TAKES 1) 
) 

(«EVENT QUITTING 
(•CONDITIONS QUITTING-PROBABILITY) 
(♦ACTIVITIES (SALES-CALL) 

(♦CANCEL) 
(♦REMOVE (THAT SALESMAN))) 

(♦ACTIVITIES (TRAINING) 
(♦CANCEL) 
(♦REMOVE (THAT TRAINEE))) 

) 

(♦ACTIVITY ADVERTISING 
(♦PREREOUISITES (*PRESFNT (3000 CASH))) 
(♦SCHEDULE ON CALL) 
(♦OUTPUT (1 PAGE-OF-ADVERTISING)) 
(♦PRIORITY 3) 
(♦TAKES 1) 

) 

(♦ACTIVITY R&D 
(♦PREREQUISITES (♦PRESENT (10000 CASH))) 
(♦TAKES 0) 
(♦SCHEDULE ON CALL) 
(♦OUTPUT (10000 R&D)) 

) 

(♦EVENT PRODUCT-IMPROVEMENT 
(♦CONDITIONS P-I-PROBABILITY) 
(♦ACTIVITIES (R*P) 

(♦OUTPUT (1 PRODUCT-IMPROVEMENT))) 
) 

(♦ACTIVITY PRODUCT-INITIATION 
(♦PREREQUISITES (♦PRESENT 

(1 PRODUCTION-LINE))) 
(♦TAKES 1) 
(♦OUTPUT (5 UNITS-IM-PROGRESS)) 

) 

(♦ACTIVITY PRODUCTION-COMPLETION 
(♦PREREQUISITES (♦PRESENT 

(5 UNITS-IM-PROGRESS))) 
(♦TAKES 1) 
(♦OUTPUT (5 UNITS)) 
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) 

(*ACTIVI TY PRODUCTION-LINE-CONSTRUCTION 
(♦PREREQUISITES (»PRESENT (30000 CASH))) 
(♦TAKES 3) «on/^; 

(♦OUTPUT (1 PRODUCTION-LINE)) 

(•ACTIVITY FACTOR 
(♦PREREQUISITES CPRESENT (5000 A-R))> 
(♦TAKES 0) 
(♦OUTPUT («»900 CASH)) 
(♦SCHEDULE ON CALL) 

(♦EVENT SALE 
(♦CONDITIONS SALES-PROBABILITY) 
(♦ACTIVITIES (SALES-CALL) 

(♦OUTPUT (10000 A-R))) 

(♦FUNCTION SALES-PROBABILITY 
(♦ARGUMENTS (PAGE-OF-ADVERTISING)) 

(PRODUCT-IMPROVEMENT)) 
(♦RETURN 

) 
)) 

(♦SUM-UP 
.25 
(AD-FUNCTION 
PAGE-OF-ADVERTISING) 

(TIMES .10 
PRODUCT-IMPROVEMENT) 

(♦FUNCTION AD-FUNCTION 
(♦ARGUMENTS (PAGE-OF-ADVERTISING)) 
(♦RETURN 

(♦TABLE (PAGE-OF-ADVERTISING 
♦RESULT) 

(0 0) (1 .01») (2 .10) (3 .17) 
) (» .23) (5 .27))) 

(♦FUNCTION P-! PROBABILITY 
(♦ARGUMENTS (R&D)) 
(♦RETURN (»TABLE (RAD ♦RESULT) 
((LESSP RAD 1*0000) 0) (U0000  02) 
(50000 .01») (60000 .J7) (70000 .11) 
(80000 .15) (90000 .18) (100000 .20) 

MMHfe 
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((GREATERP   R&D   100000)   .20))) 


